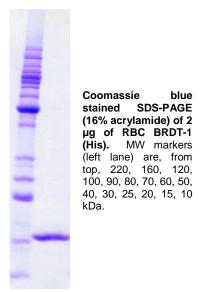


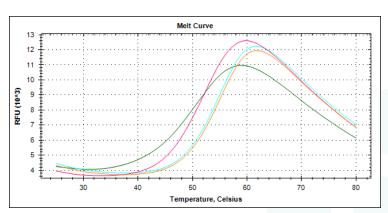
PRODUCT DATASHEET

BRDT-1 (His)

(Bromodomain testis-specific protein, bromodomain 1)

CATALOG NO.: RD-11-142 LOT NO.:


DESCRIPTION: Human recombinant BRDT, bromodomain-1 (residues 21-137; Genbank Accession # NM_001242806; MW = 16.6 kDa) expressed in *E. coli* with an N-terminal His-tag. BRDT, like other human members of the BET family of chromatin-binding proteins (BRD2, BRD3, BRD4), comprises two bromodomains (see reviews^{1,2}), protein modules that bind ε-*N*-acetyllysine residues^{3,4}. Mouse BRDT-1 can bind simultaneously to two acetyllysine residues and, among the multiply acetylated histone tails tested, had the highest affinity for a histone H4 peptide acetylated at lysines 5 and 8 (H4K5AcK8Ac)⁵. Expression of BRDT is testis-specific⁶ and deletion of the mouse BRDT-1 causes abnormal spermatid development and sterility⁷. BRDT's functions in spermiogenesis include roles in broad, programmatic regulation of gene expression^{8,9}, mRNA splicing⁸, chromatin remodeling^{6,9,10}, meiosis⁹, formation of the chromocenter¹¹ and post-meiotic genome repackaging⁹. A three-month treatment of male mice with the BET family bromodomain inhibitor, JQ1, reversibly eliminated fertility, highlighting the potential of BRDT-specific inhibition as an approach for pharmacologic male contraception¹².


PURITY: >90% by SDS-PAGE

SUPPLIED AS: _ μ g/ μ L in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1.0 mM TCEP, 10% glycerol (v/v) as determined by OD₂₈₀

STORAGE: -70°C. Thaw quickly and store on ice before use. The remaining, unused, undiluted protein should be snap frozen, for example in a dry/ice ethanol bath or liquid nitrogen. Minimize freeze/thaws if possible, but very low volume aliquots (<5 µl) or storage of diluted enzyme is not recommended.

REFERENCES: 1) B. Florence & D.V. Faller *Front. Biosci.* 2001 **6** D1008; 2) S.-Y. Wu & C.-M. Chiang *J. Biol. Chem.* 2007 **282** 13141; 3) D.J. Owen *et al. EMBO J.* 2000 **19** 6141; 4) L. Zeng & M.-M. Zhou *FEBS Lett.* 2002 **513** 124; 5) J. Morinière *et al. Nature* 2009 **461** 664; 6) C. Pivot-Pajot *et al. Mol. Cell. Biol.* 2003 **23** 5354; 7) E. Shang *et al. Development* 2007 **134** 3507; 8) B.D. Berkovits *et al. Nucleic Acids Res.* 2012 **40** 7162; 9) J. Gaucher *et al. EMBO J.* 2012 31 3809; 10) S. Dhar *et al. J. Biol. Chem.* 2012 287 6387; 11) B.D. Berkovits & D.J. Wolgemuth *Dev. Biol.* 2011 **360** 358; 12) M.M. Matzuk *et al. Cell* 2012 **150** 673

Differential Scanning Fluorimetry of RBC BRDT-1 (His) in the presence or absence of bromodomain ligands. Thermal denaturation of BRDT-1 (His) is detected (CFX384 TMTouch thermal cycler, 'FRET' channel; BioRad) by increased binding and fluorescence of the dye SYPRO®Orange (Life Technologies). Addition of 25 µM JQ1 (orange), PFI1 (pink), or BET151 (light blue) stabilizes the protein folding and shifts the Tm (inflection point) from 51.5°C to 55°C, 52.5°C, or 55°C, respectively.

This product is not intended for therapeutic or diagnostic use in animals or in humans.

Reaction Biology

1 Great Valley Parkway, Malvern PA, USA 19355 requests@reactionbiology.com www.reactionbiology.com