Angiogenesis

Angiogenesis, the formation of new blood vessels from pre-existing ones, is a physiological process during growth and development. Beyond that angiogenesis is mandatory for tumor growth and is involved in other pathological disorders (e.g. psoriasis, macular degeneration). The complexity of the angiogenic cascade limits cellular approaches towards the study of angiogenic endothelial cells (EC). In turn, both developmental as well as adult manipulatory in vivo assays are complex, multicellular and do not include human endothelial cells. The spheroid-Based in vivo Angiogenesis Assay takes advantage of human EC spheroids which form the basis for the development of a functional human vasculature in mice.

Assay procedure

Figure 1: Assay procedure. Human EC spheroids are mixed in a matrigel/fibrin matrix which is subcutaneously injected in SCID mice. The matrix mixture contains VEGF-A/FGF-2 or fibroblasts/smooth muscle cells (SMC) for human EC stimulation. The treatment may be started directly after implant injection (preventive study) or after a more mature human vasculature is established (interventive study). Finally, the matrix plug is removed and analysed for human microvessel density. Additional readouts like pericyte-coverage or perfusion are possible.

Assay features

Figure 2: Assay features. Human EC form a human vasculature that develops anastomoses with the mouse vasculature upon stimulation with VEGF-A/FGF-2 or addition of fibroblasts/SMCs. The first perfused vessels are detectable at day 4 to day 6. After 20 days of in vivo growth a well established vasculature with around 40 - 60% pericyte-covered and perfused vessels is established [1].

Study example

Figure 3: Study example. Compound 1 and antibody 1/2 were tested in the cellular Angiogenesis Assay showing a differential inhibition pattern (left). The human microvessel analysis in the spheroid-based in vivo Angiogenesis Assay revealed a similar inhibition pattern with a strong efficacy for compound 1 and antibody 1 and a moderate effect for antibody 2 (right).
Angiogenesis

Angiogenesis, the formation of new blood vessels from pre-existing ones, is a physiological process during growth and development. Beyond that angiogenesis is mandatory for tumor growth and is involved in other pathological disorders (e.g. psoriasis, macular degeneration). The complexity of the angiogenic cascade limits cellular approaches towards the study of angiogenic endothelial cells (EC). In turn, manipulative in vivo angiogenesis assays are complex, multicellular and do not include human endothelial cells. The spheroid-Based in vivo Angiogenesis Assay takes advantage of human EC spheroids which form the basis for the development of a functional human vasculature in mice.

Assay procedure

Figure 1: Assay procedure. Primary human endothelial cells are transduced by a lentivirus encoding a luciferase-neomycin fusion protein (HUVEC-LLN). Spheroids formed by HUVEC-LLN are mixed in a matrigel/fibrin matrix which is subcutaneously injected in SCID mice. The matrix mixture contains VEGF-A/FGF-2 or fibroblasts/smooth muscle cells (SMC) for stimulation of angiogenesis. The treatment may be started directly after implant injection (preventive study) or after a mature human vasculature has been established (interventional study). The growing human vasculature is monitored by bioluminescence imaging during therapy. Finally, the matrix plug is removed and the luciferase signal is analysed ex vivo. Optional, a part of the plug is analyzed for human microvessel density, pericyte-coverage and/or perfusion.

Assay features

Figure 2: Assay features. Human EC form a human vasculature that anastomoses with the mouse vasculature upon stimulation with VEGF-A/FGF-2 or addition of fibroblasts/SMCs. The first perfused vessels are detectable at day 4 to day 6. After 20 days of in vivo growth a well-established vasculature with around 40 - 60 % pericyte-covered and perfused vessels is established [1]. HUVEC-LLN form a human vasculature with no detectable difference to untransfected cells when analyzing vessel number and coverage.

Study example

Figure 3: Study example. Sunitinib and PTK787 were tested in the in vivo Angiogenesis Assay using HUVEC-LLN. Bioluminescence imaging of the mice was performed during therapy. After implementation the mice showed similar luciferase signal which was strongly reduced in the Sunitinib treated group after 20 days of treatment (left). After removing the plug the analysis of the ex vivo luciferase activity demonstrates a comparable result (right). The new technique allows monitoring the effect of the compound during therapy and a rapid and most objective analysis after plug removal.