::REACTION BIOLOGY

Introduction

First findings in the late 1990s and the early 2000s that blockade of immune checkpoint inhibitors (ICI) by antibodies could induce rejection of established tumors and induce immunity also to secondary exposure with these tumor cells, led again to a stronger focus of experimental studies on syngeneic tumor models in immunocompetent animals.

Selection of frequently used syngeneic Table 1: tumor cell lines and their origin.

Tumor cell line	Development	First description	
CT26	NMU (N-Nitroso-N-methylurea)	Corbett TH etal, Cancer Res. 1975 Sep;35(9):2434-9.	
Panc 02	3-MCA (3-methylcholanthrene)	Corbett TH etal, Cancer Res. 1984 Feb;44(2):717-26.	
B16	natural	Teicher BA, Tumor models in Cancer Research	
LL-2	natural	Sugiura K, Stock CC, Cancer. 1952 Mar;5(2):382-402.	
4T1	natural	Dexter DL etal, Cancer Res. 1978 Oct;38(10):3174-81.	
RENCA	natural	Murphy GP, J Natl Cancer Inst. 1973 Apr;50(4):1013-25.	

The availability of such models, however, is mainly limited by the small number of genetically-modified (GEM) or long-term passaged cell line-derived tumor models. As many of the cell line-derived models currently used, either naturally developed or were carcinogen-induced in the 1950s to 1970s (see table 1), the idea arose to develop new syngeneic models.

Two different approaches were followed: (A) spontaneously arising tumors in old mice and (B) carcinogen-induced tumors. These new models are propagated in a PDX-like mode via transplantation from animal to animal to maintain a preserved primary tumor phenotype and intratumoral immune cell populations.

tumor development

Animal number	Mouse strain	Sex	MHC haplotype	
0001/14			H2 ^b	
0002/14		female		
0003/14	C57BL/6			
0004/14				
0005/14		female	H2 ^d	
0006/14				
0007/14	BALB/c			
0008/14				
0009/14		female	H2 ^d	
0010/14				
0011/14	DBA/2N			
0012/14				
0013/14		female	H2 ^b	
0014/14				
0015/14	C57BL/6 albino			
0016/14				
0017/14		female	H2 ^k	
0018/14				
0019/14	CBA/J			
0020/14				
0021/14		female	H2 ^k	
0022/14				
0023/14	C3H/HeJ			
0024/14				
0025/14		male	H2 ^b	
0026/14				
0027/14	C57BL/6			
0028/14				
0029/14		male	H2 ^d	
0030/14	/			
0031/14	BALB/c			
0032/14				
0033/14		male	H2 ^b	
0034/14				
0035/14	C57BL/6 albino			
0036/14				

NEW SPONTANEOUS AND CARCINOGEN-INDUCED MOUSE-DERIVED ISOGRAFT (MDI) TUMOR MODELS FOR IMMUNE THERAPEUTIC APPROACHES

Peter Jantscheff¹, Janette Beshay¹, Thomas Lemarchand², Cynthia Obodozie¹, Christoph Schächtele¹, Holger Weber¹

¹Reaction Biology GmbH, Freiburg, Germany, ²TPL Path Labs, Freiburg, Germany

Experimental starting position

Table 2: Mouse strains observed for natural

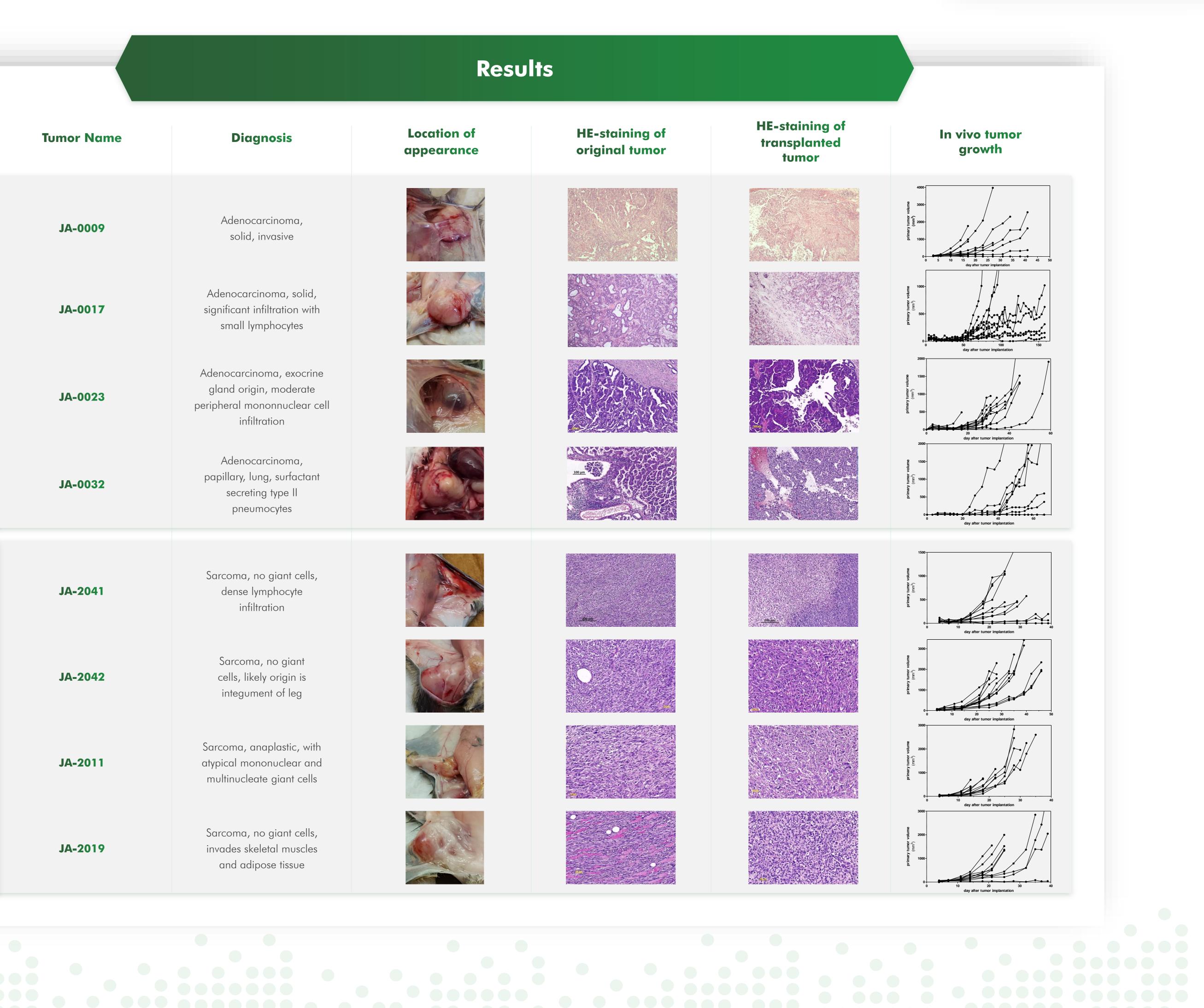
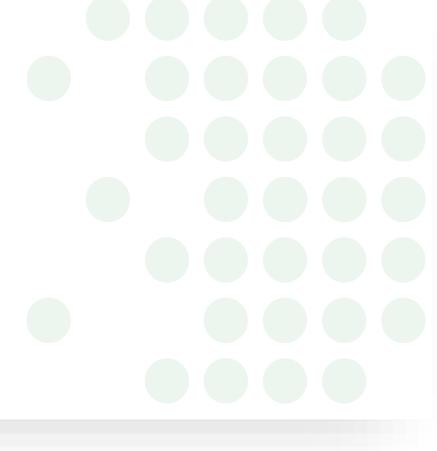


 Table 3:
 Carcinogen and application site used to induce
tumor development in CBA/J mice.


Animal number	Mouse strain	Sex	Carcinogen	Applikation site	
2009/16		female			
2010/16	CBA/J		N-Nitroso-N- methylurea (NMU)	subcutaneous	
2011/16	CDAJJ				
2012/16					
2017/16		female		subcutaneous	
2018/16	CBA/J		3-Methylcholanthren (MCA)		
2019/16	CBA/J				
2020/16					
2021/16		female		per os	
2022/16	CBA/J		3-Methylcholanthren (MCA)		
2023/16	CBA/J				
2024/16					
2033/16		male		subcutaneous	
2034/16	CBA/J		N-Nitroso-N- methylurea (NMU)		
2035/16	CBA/J				
2036/16			(*******)		
2041/16		male		subcutaneous	
2042/16			3-Methylcholanthren (MCA)		
2043/16	CBA/J				
2044/16					
2045/16		male	e 3-Methylcholanthren (MCA)	per os	
2046/16					
2047/16	CBA/J				
2048/16					

Step by at poster 5683 (4/18/2018 8:00:00 AM, Poster Section 31, N° 19) to see a comprehensive analysis of JA-0009, JA-2011 and JA-2042 or email to h.weber@reaction biology.com to receive a copy

Summary

Engraftment of tumor pieces which have never been adapted to grow in vitro Preserved original tumor histopathology via propagation from animal to animal Development of new syngeneic models for testing novel immunotherapies

