























BIX01294 is estimated as 570 nM, in good agreement with published
data at low peptide concentrations.?® Since it has been reported that
BIX01294 is competitive with the peptide substrate, but uncompet-
itive with SAM,”? the 1Cs, value was determined under lower peptide
and higher SAM concentrations. Under this condition [0.5 pM H3
(1-21) at 10 uM SAM], the ICyq value was 2.2 uM (Fig. 4A), shifted
about twofold, which is close to the value obtained by mass spec-
trometry.** Interestingly, the ICs, value was shifted about fourfold
lower when the substrate was monomethylated (Figs. 3A vs. 4B).
However, the ICq, values are still higher than those compared to the
values obtained by an SAHH-coupling assay or CLOT assay.*” In
assays using the AlphaLISA technique, the ICy, value of BIX01294
against G9a (2.2 M) was also higher (PerkinElmer, AlphaLISA
Technical Note #2). We have performed another radioisotope-based
assay using streptavidin-coated FlashPlate with biotinylated his-
tone H3 peptide, and obtained similar results to those from the
HotSpot assay. When using histone H3 protein as substrate, the ICyq
value was shifted 80-fold higher (Fig. 3B). These shifts may be
caused by the change in binding affinity to substrates, since
BIX01294 is a competitive inhibitor with respect to the peptide
substrate.” As it is expected that the binding affinity would in-
creasc for a protein substrate relative to a peptide, the increased I1Cq,
value for a peptide/protein competitive inhibitor would make sense,
consistent with a very low K,, value for the protein substrate. In fact,
it was very hard to obtain the K,,, values for the protein substrate for
most HMTs. Shinkai and Tachibana** have also observed that the
inhibition of G9a by BIX01294 is robust if an H3 N-terminal oli-
gopeptide is used as a substrate for the in vitro methyltransferase
assay, but is not significant (no inhibition at 10 uM) if a full-length
H3 is used. It would be interesting to determine the processivity of
G9a methyltransferase activity with a protein substrate in the
presence and absence of BIX01294. Further studies are needed to
clucidate the mechanism of action of BIX01294 (and recently found
analogs) not only with a peptide substrate, but with a protein sub-
strate as well.

The data in this study demonstrate the capability of the HotSpot
platform when applied to the histone methyltransferase assays. The
data quality is sufficient for all drug discovery activities, from ultra-
high throughput screening to compound profiling against a large
collection of HMTs and kinetic studies. Advantageous features of this
platform for drug discovery include the absence of interference from
fluorescent compounds and the elimination of the need for coupling
enzymes, specific antibodies, or specifically modified peptide sub-
strates. This enables substrate profiling as well as the determination
of total methylation with unidentified protein substrates or with
known peptides/proteins at undetermined methylation sites. Taking
these advantages, one can perform compound screening at K, of
peptide or SAM, or profiling under conditions close to in vivo using
nucleosomes as the substrate. One concern may be data reproduc-
ibility when using nucleosomes or core histone as a substrate, since
they are purified from natural sources (HeLa or chicken, respectively).
Although their methylation states are unknown, data reproducibility
was satisfactory (the data consistency of the ICs, values for SAH was
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shown in Supplementary Table 53); presumably, preparations are
well homogenized and minimal lot-to-lot variability. Since the
platform is a miniaturized radioisotope-based assay, it reduces the
cost by minimizing reagent usage. This is a considerable advantage
especially for difficult or expensive enzymes and substrates. We
performed a small-library HTS against DOTIL, which requires a
special substrate, core histones, and suramin was identified as a
DOTIL inhibitor. Subsequently, suramin was profiled against 17
methyltransferases with different substrates. Since the major ad-
vantage of this assay format is that it can be applied universally to
methyltransferases regardless of the substrate, it is suitable for pro-
filing. Although the activities of some HMTs are increased at low
concentrations, methyltransferases that were consistently inhibited
(without apparent activation) by suramin are DOTIL, NSD2, and
PRMT4 with ICs, values at a low pM range (Table 4). This is the first
finding that suramin inhibits DOT 1L and NSD2 activities, although it
has been reported very recently that a few HMTs are inhibited by a
suramin analog using a peptide as the substrate.*® Suramin is an old
drug that has been used for the treatment of trypanosomiasis and is
known as an antagonist of P2 receptors; recently, the application of
suramin to cancer treatment has been explored.*® It would be in-
teresting to determine the effects of suramin on methylation states at
the cellular level, especially in cancer cell lines.
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