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Protein kinases are among the most important classes of therapeutic 
targets because of their central roles in cellular signaling and the pres-
ence of a highly conserved ATP-binding pocket that can be exploited 
by synthetic chemical compounds. However, achieving highly selec-
tive kinase inhibition is a major challenge1–6. Knowing the selectivity 
of kinase inhibitors for their targets is critical for predicting and inter-
preting the effects of inhibitors in both research and clinical settings. 
However, the selectivity of kinase inhibitors is seldom assessed across 
a substantial part of the kinome. Recent technological advances have 
led to the development of methods to profile kinase target selectivity 
against sizable fractions of the 518 human protein kinases7,8. In many 
cases, however, these methods measure the binding of small molecules 
to kinases, rather than functional inhibition of catalytic activity. The 
ability of these assays to predict functional inhibition thus remains 
an important unknown.

Traditionally, kinase inhibitors have been discovered in a target-
centric manner involving high-throughput screening of large numbers 
of small molecules and a kinase of interest. The resulting compounds 
are then tested for selectivity against a panel of representative kinases. 
An alternative approach, involves screening libraries of compounds 
in a target-blind manner against a comprehensive panel of recom-
binant protein kinases to reveal the selectivity of each compound9,10. 
Compounds showing desired selectivity patterns are identified and 
then chemically optimized. This parallel approach is predicted to 
identify unexpected new inhibitors for kinases of interest and reveal 
multitargeted inhibitors, whose inhibitory activity is focused toward 
a small number of specific kinase targets rather than toward a single 
primary target11,12. Indeed, multitargeted inhibitors are challenging 
to identify by conventional target-centric screens13.

We used a high-throughput enzymatic assay to conduct a large-
scale parallel screen of 178 known kinase inhibitors against a panel 
of 300 protein kinases in duplicate. Our goals were to identify novel 

inhibitor chemotypes for specific kinase targets and to reveal the target  
specificities of a large panel of kinase inhibitors. The compounds tested 
represent widely used research compounds and clinical agents tar-
geting all of the major kinase families. The resulting data set, to our 
 knowledge the largest of its type available in the public domain, com-
prises results generated from >100,000 independent functional assays 
measuring pairwise inhibition of a single enzyme by a single compound. 
Systematic, quantitative analysis of the results revealed kinases that are 
commonly inhibited by many compounds, kinases that are resistant to 
small-molecule inhibition, and unexpected off-target activities of many 
commonly used kinase inhibitors. In addition, we report potential leads, 
for orphan kinases for which few inhibitors currently exist and starting 
points for the development of multitargeted kinase inhibitors.

RESULTS
A kinase-inhibitor interaction map
To directly test the kinase selectivity of a large number of kinase inhib-
itors, we conducted low-volume kinase assays using a panel of 300 
recombinant human protein kinases. We used HotSpot, a radiomet-
ric assay based on conventional filter-binding assays, which directly 
measures kinase catalytic activity toward a specific substrate. This 
well-validated method is the standard against which more indirect 
assays for kinase inhibition are compared7. Our collection of kinase 
inhibitors included US Food and Drug Administration–approved 
drugs, compounds in clinical testing, and compounds primarily used 
as research tools. The library comprised 178 compounds known to 
inhibit kinases from all major protein kinase subfamilies (Fig. 1a and 
Supplementary Table 1).

The kinase panel tested includes members of all major human 
protein kinase families (Fig. 1b) and includes the intended targets 
of 87.6% of the compounds tested. A complete listing of the kinase 
constructs and substrates used is provided in Supplementary Table 2. 
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For simplicity, all compounds were tested at 
a concentration of 0.5 µM in the presence of 
10 µM ATP. Despite an average reported half-
maximum inhibitory concentration (IC50) 
for these compounds toward their primary 
targets of 66 nM, we chose to use 0.5 µM to 
capture weaker off-target inhibitory activity.

We tested each protein kinase and kinase 
inhibitor combination (kinase-inhibitor pair) 
in duplicate and expressed the average sub-
strate phosphorylation results as a percent-
age of solvent control reactions (henceforth 
referred to as remaining kinase activity). We 
identified and eliminated disparate replicates 
(0.18% of the data set) from the analysis 
(Online Methods and Supplementary Fig. 1). 
Figure 1c illustrates the reproducibility of the 
resulting data set as a scatter plot in which 
each point represents one kinase-inhibitor 
pair plotted as the remaining kinase activity 
in one replicate versus the second replicate, 
for all kinase-inhibitor pairs in which at least 
20% kinase inhibition was observed.

The mean remaining kinase activity for each kinase-inhibi-
tor pair is presented as a heat map in Figure 1d, in high-reso-
lution form in Supplementary Figure 2 and as a spreadsheet 
in Supplementary Table 3. In addition, we created the Kinase 
Inhibitor Resource (KIR) database, an internet website that allows 
compound or kinase specific queries of the data set to be down-
loaded or analyzed within a browser window (http://kir.fccc.edu/). 
Two-way hierarchical clustering was performed to cluster both 
kinases and inhibitors based on the similarity of their activity  
patterns. As expected, structurally related compounds were gener-
ally grouped together. Similarly, kinases closely related by sequence 
identity were often clustered and were inhibited by similar pat-
terns of compounds. Exceptions included members of the clinically  
relevant Aurora, PDGFR and FGFR family kinases (Supplementary 
Fig. 2), suggesting the possibility that members of these families 
can be differentially targeted by small molecules. Consistent with 
this finding, isoform-specific inhibitors of Aurora kinases have 
been reported and structural studies have revealed the structural 
basis for isoform-specific inhibition14.

Comparison of data across multiple assay platforms
A variety of high-throughput screening approaches have been devised to 
detect kinase-compound interactions without directly measuring inhibi-
tion of kinase catalytic activity. Although convenient for screening, the 
extent to which these binding assays predict inhibition of catalytic activ-
ity remains uncertain. To assess this, we compared our kinase inhibition 
data with previous large-scale studies of the binding of small molecules 
to kinases. Two recent studies used a competitive binding assay to derive 
affinities for a large number of kinase-inhibitor interactions1,2. Six hun-
dred fifty-four kinase-inhibitor pairs overlapped with our study and their  
affinities showed generally good agreement with the expected kinase 
activity measured in our single-dose study (Fig. 2a). Indeed, 90.2% of 
kinase-inhibitor interactions with high affinity (stronger than 100 nM Kd)  
showed functional inhibition (>50%). Conversely, only 13.1% of the 
kinase-inhibitor pairs with low affinity (weaker than 1 µM Kd) showed 
>50% inhibition, as expected.

An alternative approach to monitoring kinase-compound bind-
ing involves protecting kinases from thermal denaturation by com-
pound binding3. To assess this approach to predict kinase inhibition, 
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we plotted the remaining kinase activity in our functional assay as a 
function of the change in reported melting temperature (Tm) of each 
kinase-inhibitor pair (Fig. 2b). Generally, compounds that increased 
the kinase melting temperature also showed inhibition of catalytic 
activity, as predicted. However, a significant number of compounds 
showed Tm changes >4 °C, the hit threshold used previously3, without 
inhibiting kinase activity by >50% (Fig. 2b, upper right dashed quad-
rant). Likewise, 117 out of 3,926 inhibitor pairs showed >50% inhibi-
tion of kinase activity without exhibiting Tm changes >4 °C (Fig. 2b, 
lower left dashed quadrant). The findings from these comparisons, 
taken together, suggest that kinase-inhibitor binding assays exhibit 
appreciable false-positive and false-negative rates with respect to their 
ability to predict compounds that functionally inhibit catalytic activ-
ity, although binding and inhibition are significantly correlated.

Analysis of kinase druggability
We next asked whether each kinase in the panel was equally likely to 
be inhibited by a given compound or whether kinases differed in their 
sensitivity to small-molecule inhibition. To do this, we ranked the 
kinases with respect to a selectivity score (S(50%)), the fraction of all 
compounds tested that inhibited the catalytic activity of each kinase 
by >50% (Fig. 3 and Supplementary Table 4). Only 14 kinases in the 
panel were not inhibited by any of the compounds tested (Fig. 3, left 
inset), demonstrating good coverage of the kinome by this inhibi-
tor set. The untargeted kinases, including COT1, NEK6/7 and p38δ, 
suggest a target list for which screens using traditional ATP-mimetic 
scaffolds may be less successful. By contrast, a subset of kinases 
including FLT3, TRKC and HGK/MAP4K4 were broadly inhibited 

by large numbers of compounds (right inset), potentially representing 
kinases highly susceptible to chemical inhibition. This broad range 
of kinase sensitivity to small molecules has important implications 
for the assessment of kinase inhibitor selectivity with small kinase 
panels and suggests that screening panels should include these sensi-
tive kinases. We cannot completely exclude the possibility, however, 
that the results could reflect hidden biases in our compound library.

Kinase inhibitor selectivity
Kinase inhibitors are commonly used as research tools to reveal the 
biological consequence of acute inactivation of their kinase targets. 
Interpretation of the results of such experiments depends critically 
on knowing the inhibitor target(s). The selectivity of novel kinase 
inhibitors is frequently assessed by testing against a limited panel of 
closely related kinases based on the assumption that off-target inter-
actions are more likely to be found with kinases most closely related 
by amino acid sequence. To test this quantitatively, we assessed the 
fraction of kinase targets that are within the same kinase subfamily 
versus outside the family of the primary target. As highly promiscuous 
compounds would increase the apparent frequency of out-of-family 
targets, we removed the top ten most promiscuous compounds before 
the analysis. On average, 42% of the kinases inhibited by a given com-
pound were from a different kinase subfamily than the subfamily 
of the intended kinase target (Supplementary Fig. 3). For inhibi-
tors developed against tyrosine kinases, 24% of off-target hits were 
serine/threonine kinases. The within-family selectivity of tyrosine 
kinase-targeting compounds may be explained, in part, by the fact 
that these compounds include almost all of the clinical agents in our 
compound set and are, therefore, likely more optimized with regard 
to specificity than research tool compounds. These results highlight 
the importance of assessing the selectivity of kinase inhibitors against 
as broad a panel of kinases as possible.

Inhibitors that exhibit selectivity for a very limited number of 
kinase targets are most valuable as research tools for probing kinase 
function. Various methods have been proposed to quantitatively 
assess kinase inhibitor selectivity. A selectivity score S(x) has been 
defined, where S is the number of kinases bound by an inhibitor 

Figure 2 Comparison of functional inhibition data generated in this  
study with previous kinase-inhibitor interaction profiling studies.  
(a,b) Scatter plots compare our results with studies that examined 
interactions of overlapping kinase-inhibitor pairs by a quantitative kinase-
inhibitor binding assay1,2 (a), or an assay measuring resistance to thermal 
denaturation by kinases in the presence of individual inhibitors3 (b).  
In a, remaining kinase activity is plotted as a function of kinase-
compound binding affinity (Kd) for 654 kinase-inhibitor pairs. The 
resulting data were fit to a sigmoidal dose-response curve (solid line) 
and can be compared with a theoretical curve (dotted line) for expected 
remaining kinase activity for an inhibitor of the given affinity.  
In b remaining kinase activity is plotted against the change in Tm, relative 
to solvent control, caused by compound binding for 3,926 kinase-inhibitor pairs. The dashed vertical line denotes the Tm shift threshold used in ref. 3. 
The dashed horizontal line highlights the 50% threshold for inhibition of catalytic activity. The resulting upper right quadrant includes compounds that 
showed significant thermal stabilization without inhibiting kinase activity whereas the lower left quadrant contains compounds which only marginally 
affect thermal stability yet show >50% inhibition of catalytic activity. Ctrl, control.
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(with an affinity greater than x µM) divided by the number of kinases 
tested2. A critical limitation of the selectivity score is its dependence 
on an arbitrary hit threshold (x µM). For example, when we analyzed 
our data using an arbitrary percent inhibition as the hit criterion, 
several compounds scored favorably because they met the hit thresh-
old with a limited number of kinases, despite a great deal of inhibi-
tion of other kinases just below this threshold (not shown). Indeed, 
selectivity scores generated from the same data set but using different 
hit thresholds can produce different rank orders of compounds2. In 
addition, compounds that did not meet the hit threshold for any 
kinase could not be scored. We therefore calculated a previously 
described metric for kinase inhibitor selectivity based on the Gini 
coefficient15. Importantly, this method does not depend on defining 
an arbitrary hit threshold, although it is strongly influenced by the 
compound screening concentration. The Gini score reflects, on a 
scale of 0 to 1, the degree to which the aggregate inhibitory activity 
of a compound (calculated as the sum of inhibition for all kinases) is 
directed toward only a single target (a Gini score of 1) or is distrib-
uted equally across all tested kinases (a Gini score of 0). We used the 
results of this analysis to rank the compounds from the most promis-
cuous to the most selective (Fig. 4a; complete list in Supplementary 
Table 5). Not surprisingly, staurosporine and several of its structural 
analogs exhibited the lowest Gini scores (Fig. 4a, left inset), con-
sistent with their known broad target spectrum. Among the most 
selective compounds (Fig. 4a, right inset) were several structurally 
distinct inhibitors of ErbB family kinases. The target spectra of the 
three compounds with the lowest, median and highest Gini scores 
are shown in the bottom panels. Although a comparable number of 
kinases were targeted by the compounds with the median and highest 
Gini scores (middle and right dendrograms), masitinib achieves a 
higher Gini score by producing lower residual kinase activity in its 
targets (darker spots).

To understand the molecular features that contribute to inhibitor 
promiscuity, previous kinase-inhibitor profiling studies have identi-
fied correlations between compound physicochemical properties and 
promiscuity13,16. We analyzed a variety of compound physicochemical 
properties with respect to either the Gini score or the selectivity score 
but did not observe a consistent linear correlation with any single 

compound property (Supplementary Fig. 4). This finding and the 
discrepant findings of the previous studies suggest that compound 
promiscuity is unlikely to be strongly related to any one physical 
parameter in a simple, linear manner.

The clinical success of some kinase inhibitors that show poor kinase 
selectivity in vitro (e.g., dasatinib (Sprycel), sunitinib (Sutent)) has led 
to increasing interest in so-called multitargeted kinase inhibitors12,17. 
Ideally, such compounds differ from promiscuous inhibitors in that 
they should show significant selectivity toward a limited number of 
clinically relevant targets with the goal of achieving greater therapeu-
tic effect than targeting a single kinase18. Despite the promise of poly-
pharmacology, it remains a difficult technical challenge to rationally 
develop single compounds with a desired target spectrum18,19. Parallel 
kinase profiling of large inhibitor libraries has been suggested as an 
approach to identify compound scaffolds that show promising activ-
ity against specific kinases of interest9,19. We interrogated our data 
for examples of inhibitors with off-target activities against a limited 
number of cancer-relevant kinases. The ErbB family kinase inhibitor 
4-(4-benzyloxyanilino)-6,7-dimethoxyquinazoline20 showed potent 
inhibition of a few tyrosine kinases beyond ErbB family members and, 
most surprisingly, potent inhibition of the serine/threonine kinase 
CHK2, a critical component of the DNA damage checkpoint (Fig. 4b).  
CHK2 inhibition has been proposed as a strategy to increase the ther-
apeutic impact of DNA-damaging cancer therapies and inhibitors of 
CHK2 are in clinical trials21. This illustrates how kinase profiling can 
reveal unanticipated novel scaffolds that show activity against highly 
divergent kinases of therapeutic interest. Data mining of this and 
similar data sets can facilitate the identification of inhibitor scaffolds 
with activity toward multiple targets of interest.

Novel targets of uni-specific kinase inhibitors
Even among the most selective inhibitors identified by the screen, 
most still targeted multiple kinases with similar potency (Fig. 4a, 
rightmost dendrogram), therefore confounding their use as research 
tools to elucidate the function of a single kinase. We therefore asked 
whether any compounds inhibited a single kinase more potently than 
any other in our panel, a characteristic we termed ‘uni-specificity’. 
Importantly, this stringent criterion excludes compounds that target 

Figure 4 Kinase inhibitor selectivity.  
(a) A ranked list of kinase inhibitors  
sorted by Gini score15 as a measure of  
inhibitor selectivity. A Gini score of 0  
indicates equal inhibition of all kinases 
(promiscuous inhibition) whereas a score of  
1 indicates inhibition of only one kinase 
(selective inhibition). Left inset highlights  
the five compounds with the lowest Gini  
scores and the right inset, the five highest 
scoring compounds. The complete table is 
presented in Supplementary Table 5. Below, the 
selectivity of three representative compounds 
are presented on a dendrogram of all human 
kinases based on amino acid sequence 
similarity33. Spot color represents inhibitory 
potency: darkest, 0–10% remaining activity; 
lighter, 10–25% activity; lightest, 25–50% 
activity. The kinome dendrogram was adapted 
and is reproduced courtesy of Cell Signaling 
Technology. (b) Target spectrum of 4-(4-
benzyloxyanilino)-6,7-dimethoxyquinazoline, 
a multitargeted inhibitor, highly selective for ErbB family members, a limited number of other tyrosine kinase targets and the serine/threonine kinase 
CHK2. Each bar corresponds to the percent remaining activity for an individual kinase.

Masitinib
EGFR/ErbB-2/ErbB-4 inhibitor

EGFR/ErbB-2 inhibitor
Sorafenib
Tandutinib

Staurosporine

a b

K-252a
SB 218078

Cdk1/2 inhibitor III
PKR inhibitor

Staurosporine GTP-14564

120

BRK

MER
CHK2

ErbB2

EGFR

ErbB4

LCK
YES

K
in

as
e 

ac
tiv

ity
 (

%
 c

tr
l)

100

80

60

40

20

0

EGFR/ErbB-2 inhibitor
CAS no. 179248-61-4

Masitinib

1.00

0.75

0.50

0.25

0

G
in

i s
co

re



©
20

11
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology  advance online publication �

r e s o u r c e

more than one kinase with similar potency, even if those kinases 
are closely related isoforms from the same subfamily. In addition, it 
has a bias for kinase targets without close homologs in the screen-
ing panel. A uni-specificity score was calculated for each compound 
by subtracting the remaining kinase activity of the most potently 
inhibited kinase from the activity of the next most potently inhibited 
kinase. Compounds were then ranked from most uni-specific (highest 
numerical score) to least. We plotted the results as a horizontal bar 
graph in which the leftmost edge of the bar denotes the remaining 
kinase activity for the most potently inhibited kinase and the right-
most edge indicates the remaining kinase activity of the second most 
potently inhibited target (Fig. 5, leftmost panel). The length of each 
bar, therefore, denotes the differential potency of inhibition of these 
two most sensitive kinase targets, and the left-right positioning of this 
bar indicates the absolute potency against these targets.

Few compounds in the panel showed any degree of uni-specificity 
and most of these showed only slight potency differences between 
their primary and secondary targets (short bars in Fig. 5, leftmost 
panel). This finding highlights the challenge of achieving differ-
ential inhibition of closely related kinases. Nineteen compounds 
inhibited their primary target at least 20% more potently than any 
other kinase in the panel (Fig. 5, middle). Among these 19 most uni-
 specific kinases are several inhibitors intended to target the epidermal 
growth factor receptor (EGFR). In fact, the most uni-specific inhibi-
tor, a 4,6-dianilinopyrimidine EGFR inhibitor (CAS no. 879127-07-8) 
with a reported IC50 of 21 nM for EGFR22, inhibited EGFR catalytic 

 activity by >94% but inhibited its next most potently inhibited target, 
MRCKα, by only 22%. In contrast to other EGFR inhibitors tested, 
this compound also highlights the ability to achieve isoform-selective  
inhibition among the closely related ErbB family kinases22. The dra-
matic selectivity of this and other uni-specific EGFR inhibitors iden-
tified here could reflect unique features of EGFR or, more likely, the 
unequal attention devoted to the development of inhibitors of this 
important therapeutic target.

Strikingly, 6 of the top 17 uni-specific compounds inhibited other 
kinases more potently than the kinases they were intended to target 
(Fig. 5, center, gray rows). The rightmost panel of Figure 5 shows 
the activity of 5 of these 6 compounds against all kinases in the 
panel as a sorted plot. The ATM kinase inhibitor was not included 
because ATM was not a part of the screening panel. In all cases these 
more potent off-target hits represent hitherto unknown kinase tar-
gets of these compounds. Remarkably, in all but one case, that of the 
compound DMBI, the most potent off-target hit falls outside of the 
kinase subfamily of the intended target. For example, we identified 
the serine/threonine kinase RIPK2 as a much more sensitive target 
of the IGF1R tyrosine kinase inhibitor AG1024, one of the most uni-
specific compounds identified.

To validate the use of our single-dose screening data to rank the 
sensitivity of different kinases to the same compound, we determined 
the dose-response relationship for five uni-specific compounds against 
both their intended and novel targets. In all cases the greater potency 
against the novel targets were confirmed (Supplementary Fig. 5). 
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These findings confirm the accuracy of our single-dose data and reveal 
potently inhibited new targets for these compounds. For example, 
the results revealed the weak platelet-derived growth factor receptor 
inhibitor, DMBI to be a highly potent inhibitor of FLT3 and TrkC. 
Additionally, SB202474, an inactive analog of the p38 MAP kinase 
inhibitor SB202190 (ref.  23), showed significant inhibition of only one 
kinase, the haploid germ cell–specific nuclear protein kinase Haspin 
(Fig. 5). This atypical family kinase phosphorylates histone H3 and 
contributes to chromosomal organization and has been suggested as an 
anti-cancer target, though few inhibitors have been reported24–26. Thus, 
the uni-specific compounds described here provide new and selective 
inhibitors for their novel targets and in some cases, starting points for 
multitargeted kinase inhibition.

DISCUSSION
Previous kinase inhibitor profiling studies have revealed an unex-
pected number of interactions with off-target kinases, even for highly 
characterized kinase inhibitors1,2. These findings have emphasized 
the importance of broad kinase profiling of these compounds and are 
supported by our data. Quantitative assessment of inhibitor selectivity 
is increasingly important as ever-larger kinase profiling data sets are 
reported. Although strong kinase selectivity may not be essential for 
efficacy of therapeutic agents27, it is critical for tool compounds used 
to elucidate kinase biology. We therefore applied the Gini coefficient as 
a measure of kinase inhibitor selectivity15, thus avoiding the necessity 
for arbitrary hit thresholds used by previous methods2. Comparison 
of Gini scores across multiple inhibitors targeting a specific kinase 
of interest should provide a powerful basis for choosing the most 
selective inhibitor for investigating kinase function. For example, 
the compound collection contains four well-established inhibitors of 
the AGC subfamily kinase ROCK (Rho-associated kinase): Rockout,  
glycyl-H-1152 (Rho Kinase Inhibitor IV), Y-27632 and the clinical 
agent fasudil (HA-1077)28,29. Gini score analysis revealed greatest 
selectivity for glycyl-H-1152 (0.738) and, indeed, this compound 
inhibited both ROCK I and II significantly more potently than any 
other kinase (data not shown). By contrast, fasudil showed more potent 
inhibition of PRKX and KHS than ROCK. Strikingly, hierarchical  
clustering based on target spectrum clustered Rockout, Rho Kinase 
Inhibitor IV and Y-27632 together (Supplementary Fig. 2), despite 
no clear structural similarity in the compounds. In fact, the secondary  
targets shared by these compounds are almost all other members of 
the AGC kinase subfamily, demonstrating that a variety of distinct 
chemotypes can be employed to selectively inhibit AGC kinases,  
perhaps due to greater sequence divergence of this subfamily from 
other subfamilies. These findings illustrate the utility of the present 
data set in guiding both tool compound selection and the development 
of new inhibitors selective for particular kinase subfamilies.

We also introduce the concept of uni-specificity as a way of quan-
titatively assessing the differential activity of an inhibitor toward its 
most sensitive and its next most sensitive kinase targets. Compounds 
exhibiting the greatest degree of uni-specificity are expected to pro-
vide the widest dosing window within which only a single kinase 
target is inhibited. We used this metric to prioritize the characteriza-
tion of new inhibitor targets. Six uni-specific compounds were found 
that inhibit other kinases more potently than their intended targets. 
In all cases, these compounds represent previously unknown targets 
for these compounds.

Although the high-throughput assay used here to systematically 
measure kinase activity is economical, rapid and robust, caution is 
warranted if attempting to extrapolate these in vitro results to the 
prediction of cellular efficacy. First, our screen was carried out in the 

presence of 10 µM ATP regardless of the affinity of individual kinases 
for ATP. Potency of ATP-competitive kinase inhibitors in the cellular 
context is dictated not only by the intrinsic affinity of the inhibitor 
for the kinase, but also by the Michaelis-Menten constant for ATP 
binding and the cellular concentration of ATP30. Thus, the relative 
rank order of inhibited kinases determined here may differ in the 
cellular context. Second, many kinases in the panel are represented 
by truncated constructs whose interactions with a compound could 
differ in the context of the full-length kinase or in the cellular milieu. 
In addition, many kinases can adopt multiple conformational states 
and only one such state was assayed for each kinase. Third, though the 
kinase panel tested here is among the largest available for biochemical 
measurements of kinase catalytic activity, a minority of kinases are 
not included in the panel. Thus, additional off-target activities against 
untested kinases can be reasonably expected. Nevertheless, the data 
presented here provide a rich resource of information concerning 
kinase-inhibitor interactions, and biochemical analysis of kinase-
inhibitor interactions generally correlates with cellular efficacy30.

Protein kinase research has been predominantly focused on a small 
subset of the kinome31. The identification of selective inhibitors target-
ing poorly understood kinases would greatly facilitate elucidation of 
their function. Our identification of a uni-specific inhibitor of Haspin 
provides one example of how large-scale kinase profiling can iden-
tify new tool compounds to stimulate new research. Crystallographic 
studies may also benefit from the present study. Protein kinases exhibit 
considerable conformational plasticity, which can make it difficult to 
obtain diffracting crystals of unliganded kinases32. ATP-competitive 
kinase inhibitors can be used to stabilize kinases for crystallographic 
structure determination3. The data set presented here provides a 
library of candidates, on average nine per kinase, to support such 
studies. In addition, we illustrate how the present data set can be 
mined to reveal new opportunities for multitargeted kinase inhibi-
tion (Fig. 4b). Indeed, new statistical methods have been recently 
developed13 to facilitate analysis of potential drug polypharmacology 
using robust kinase-inhibitor interaction maps such as this. Finally, 
we expect that the inhibitor collection characterized here, with activ-
ity against the majority of human protein kinases, will be a powerful 
tool to elucidate kinase functions in cell models.

METHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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Supplementary Figure 1e also represent these limits whereas the green and 
black circles within this region represent these observations. These observa-
tions were excluded from the current set of data and the CV recomputed for 
the remaining kinase-inhibitor pairs.

The distribution-based outlier detection method outlined by van der Loo35 
was then applied to the CV based on this reduced set of data points. First, the 
distribution of CV was determined and its parameters estimated using methods 
described earlier for D34. The log-normal distribution provided the best fit for 
these data (Supplementary Fig. 1c,d). For outlier detection, the data (excluding 
the top and bottom 1%) were fit to the quantile-quantile plot positions for the 
log-normal distribution and its parameters were robustly estimated. A test was 
then performed to determine whether extreme observations are outliers by 
computing the threshold beyond which a certain prespecified number of obser-
vations are expected. The pink horizontal line in Supplementary Figure 1e 
represents this threshold and corresponds to a CV cut-off of ~0.5. Based on 
this twofold approach, the remainder of the observations that were located 
above the CV cut-off of 0.5 and outside this band, represented by blue circles, 
were identified as outlying observations and excluded from further analysis. 
The outliers (black data points) are shown within the context of the complete 
data set in Supplementary Figure 1f.

Hierarchical clustering. Negative values for remaining kinase activity were 
truncated to zero and values >100 were truncated at that value. A reordered 
heat map of compound activity was obtained using two-way hierarchical clus-
tering based on 1 – Spearman rank correlation as the distance metric and 
average linkage. No scaling was applied to the data.

Computations were carried out in the R statistical language and environ-
ment using libraries VGAM and extremevalues.

Kinase activity analysis. The theoretical kinase activity curve in Figure 2a was 
calculated according to the equation: activity = (100 − (100/(1 + (IC50/0.5 
µM))) and the Cheng-Prusoff equation36 relating Ki and IC50. This calcula-
tion assumes a Hill coefficient of 1 for the binding and a Km,ATP of 10 µM for 
all kinases.

ONLINE METHODS
Materials. Kinase inhibitors (Supplementary Table 1) were obtained 
either from EMD Biosciences or LC Laboratories with an average purity of 
>98%. A complete description of recombinant kinases used is provided in 
Supplementary Table 2.

Kinase assays. In vitro profiling of the 300 member kinase panel was performed 
at Reaction Biology Corporation using the “HotSpot” assay platform. Briefly, 
specific kinase/substrate pairs along with required cofactors were prepared in 
reaction buffer; 20 mM Hepes pH 7.5, 10 mM MgCl2, 1 mM EGTA, 0.02% 
Brij35, 0.02 mg/ml BSA, 0.1 mM Na3VO4, 2 mM DTT, 1% DMSO (for specific 
details of individual kinase reaction components see Supplementary Table 2). 
Compounds were delivered into the reaction, followed ~20 min later by addition 
of a mixture of ATP (Sigma) and 33P ATP (PerkinElmer) to a final concentration 
of 10 µM. Reactions were carried out at 25 °C for 120 min, followed by spot-
ting of the reactions onto P81 ion exchange filter paper (Whatman). Unbound 
phosphate was removed by extensive washing of filters in 0.75% phosphoric 
acid. After subtraction of background derived from control reactions containing 
inactive enzyme, kinase activity data were expressed as the percent remaining 
kinase activity in test samples compared to vehicle (dimethyl sulfoxide) reac-
tions. IC50 values and curve fits were obtained using Prism (GraphPad Software). 
Kinome tree representations were prepared using Kinome Mapper (http://www.
reactionbiology.com/apps/kinome/mapper/LaunchKinome.htm).

Statistical methods. Outlier detection. Raw data were measured as percentage 
of compound activity for each kinase-inhibitor pair in duplicate. All negative 
values were truncated to zero and kinase-inhibitor pairs with either miss-
ing observations or identical values across duplicates were removed from 
further analysis and the coefficient of variation (CV) and the difference (D) 
from duplicate observations were computed for each kinase-inhibitor pair. 
Using kernel density estimation and quantile-quantile plots, the difference 
D was determined to be double exponentially distributed (Supplementary 
Fig. 1a,b). Its location and scale parameters (and hence the mean and s.d.) 
were estimated using maximum likelihood methods34. A scatter plot of CV 
versus D is displayed in Supplementary Figure 1e for all pairs of data points. 
To account for the inherent noise in the assay measurements, we retained 
observations within 1 s.d. of the mean of the distribution of differences D (as 
determined by the gray vertical lines in the double exponential density plot 
for D, Supplementary Fig. 1a) for further analyses of compound activity. The 
region enclosed by these vertical lines contains 75.6% of the observations based 
on the estimated mean and s.d. of this distribution. The red vertical lines in 
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