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Pharmacogenomics characterization of the MDM2 inhibitor
MI-773 reveals candidate tumours and predictive biomarkers
Vincent Vuaroqueaux 1✉, Hans R. Hendriks 2, Hoor Al-Hasani1, Anne-Lise Peille1, Samayita Das1 and Heinz-Herbert Fiebig1

MI-773 is a recently developed small-molecule inhibitor of the mouse double minute 2 (MDM2) proto-oncogene. Preclinical data on
the anti-tumour activity of MI-773 are limited and indicate that tumour cell lines (CLs) with mutated TP53 are more resistant to MI-
773 than wild type TP53. Here, we explored the compound’s therapeutic potential in vitro using a panel of 274 annotated CLs
derived from a diversity of tumours. MI-773 exhibited a pronounced selectivity and moderate potency, with anti-tumour activity in
the sub-micromolar range in about 15% of the CLs. The most sensitive tumour types were melanoma, sarcoma, renal and gastric
cancers, leukaemia, and lymphoma. A COMPARE analysis showed that the profile of MI-773 was similar to that of Nutlin-3a, the first
potent inhibitor of p53–MDM2 interactions, and, in addition, had a superior potency. In contrast, it poorly correlates with profiles of
compounds targeting the p53 pathway with another mechanism of action. OMICS analyses confirmed that MI-773 was primarily
active in CLs with wild type TP53. In silico biomarker investigations revealed that the TP53 mutation status plus the aggregated
expression levels of 11 genes involved in the p53 signalling pathway predicted sensitivity or resistance of CLs to inhibitors of
p53–MDM2 interactions reliably. The results obtained for MI-773 could help to refine the selection of cancer patients for therapy.
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INTRODUCTION
The tumour protein p53 is a transcription factor involved in cell
cycle regulation, apoptotic cell death, and maintenance of genetic
stability1,2. The TP53 gene, encoding for p53, is mutated in ~40%
of human cancers, the mutation frequency differs between
tumour types and ranges from <5% to >90%3,4. TP53 mutations
profoundly affect tumour cell genomic structure, expression, and
clinical outlook. Loss of p53 integrity is correlated with poor
patient survival for multiple tumour types5. Mouse double minute
2 (MDM2) primarily regulates the expression of p53, which makes
it an attractive target for cancer therapy6.
MDM2 is a ubiquitin ligase that facilitates p53 proteasomal

degradation. Upon stress such as DNA damage, the
protein–protein interaction between p53 and MDM2 is disrupted,
resulting in elevated p53 levels, cell cycle arrest, DNA repair, or
elimination by apoptosis7–9. MDM2 amplification and overexpres-
sion are found at a high frequency in soft tissue tumours, e.g.,
liposarcoma, at a lower frequency in glioblastoma and breast
cancer, but not in tumour types like leukaemia, lymphoma, and
melanoma. MDM2 overexpression leads to the downregulation of
p53 and, consequently, loss of apoptotic function and cell cycle
arrest in wild type TP53 tumours and is associated with drug
resistance to chemotherapeutics such as cisplatin10–13. Small
molecule inhibitors which occupy the p53-binding pocket of
MDM2 disrupt the MDM2–p53 interaction, leading to the
stabilisation of p53 and activation of the pathway14. Several
MDM2 inhibitors are currently in clinical development15.
The MDM2 inhibitor MI-773 (SAR405838, MI-77301) is a recent

small molecule that binds to MDM2 with high affinity (Ki =
0.88 nM)16. It is active in wild type TP53 cell lines (CLs) from
leukaemia and solid tumours in vitro and induces either durable
tumour regression or effective tumour growth inhibition in
subcutaneously transplanted patient-derived tumour models
(PDX). The compound is less efficacious in CLs and PDX with
mutated TP5316–19. Two-Phase I studies were conducted in

patients with locally advanced or metastatic solid tumours
(mainly wild type TP53) either as single-agent or in combination
with the oral MEK1+2 inhibitor pimasertib. In both studies, MI-
773 showed an acceptable safety profile20,21.
Preclinical and early clinical proof-of-concept studies have

shown that small-molecule MDM2 inhibitors block the
p53–MDM2 interaction, activate p53 in patients, and have
acceptable safety profiles9,22,23. The published preclinical data
on the anti-tumour activity of MI-773 are limited and concern
investigations in a small panel of human leukaemia and solid
tumour CLs (with either wild type, mutated or deleted TP53).
Since ~60% of all human tumours are wild type TP53, and
preclinical data suggest that CLs with mutated TP53 are more
resistant to MI-773 than wild type TP5324, it is of particular
interest to explore the therapeutic potential of the compound
in a large number of haematological and solid tumours with
both wild type and mutated TP53. These data prompted us to
explore the therapeutic potential of MI-773 in depth. Here, we
report the results of this in vitro and pharmacogenomic study,
revealing candidate tumours for treatment with MI-773 and a
biomarker set for patient stratification.

RESULTS
MI-773 exerts anti-tumour activity in vitro
Figure 1a shows the dose–response curves of the individual 274
CLs and the large variety in sensitivity to the compound. The
absolute IC50 values (Abs IC50) of the CLs ranged from 0.11 to
30.8 µM (Supplementary Table 1) with a median Abs IC50 of
13.4 µM (IQR: 5.7–17.6 µM). Three distinct patterns of sensitivity
appeared in the rank order of the Abs IC50 values (Fig. 1b). The
first subset of 40 CLs highly sensitive to MI-773 (15%; Abs IC50

values <1 µM), the second subset of 38 intermediate sensitive
CLs (14%; Abs IC50 [1, 10[ µM), and the third subset of 196
resistant CLs (71%; Abs IC50 values ≥ 10 µM). The subset of
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highly sensitive CLs was enriched in melanoma, mesothelioma,
renal cancer, leukaemia, and lymphoma. The sensitivity of CLs
within a given tumour type was highly variable (Fig. 1c, d).
Melanoma, renal cancer, sarcoma, and gastric cancer were the
solid tumour types with the most sensitive CLs (>10 CLs/tumour
type and >30% highly and intermediate sensitive CLs), and
acute myeloid leukaemia (AML) and multiple myeloma were the

most sensitive haematological tumours (Fig. 1c, d, Supplemen-
tary Table 2).

Validation of MI- 773’s mechanism of action
To validate the mechanism of action of MI-773, we performed a
COMPARE analysis in which the MI-773 Abs IC50 values (4HF Biotec

a

c d

Te
st

./C
on

tro
l (

%
)

0

120

40

80

Concentration (µM)

20

60

100

140

0.0001 0.001 0.01 0.1 1 10 100

24 24 52

17 83

30 11 59

20 20 60

50 17 33

19 12 69

10 90

11 22 67

6 19 75

13 13 74

29 21 50

6 19 75

40 60

15 15 70

18 82

18 82

25 75

100

100

100

100

Melanoma

Mesothelioma

Leukaemia

Kidney

Lymphoma

Prostate

Stomach

HNSC

Sarcoma

Breast

CNS

SCLC

Liver

CRC

Bladder

Ovary

NSCL

Pancreas

Oesophagus

Uterus

Skin

0%

25%

50%

75%

100%

Response rate (%)

Melanoma [12]
LY_Hodgkin [1]

LE_ALL [8]
SA_osteo [3]

LY_unclass [4]
Kidney [14]
LE_CLL [1]

LY_MM [11]
NSCL_unclass [1]

LY_Burkitt [4]
SA_soft t [9]

LE_AML [11]
Liver_chol [5]
SA_Ewing [1]
LY_DLBC [5]

Prostate [5]
Liver_hep [11]

Stomach [16]
Breast [15]

CRC [16]
LE_CML [7]

Bladder [8]
NSCL_large [7]

Mesothelioma [5]
NSCL_ad [15]
Pancreas [15]

Uterus_endo [6]
SCLC [10]

CNS_GBM [9]
Skin [1]

Uterus_cervix [5]
Oesophagus [5]

Ovary [11]
HNSC [12]

NSCL_ep [5]
0010111.010.0

n = 274

Drug potency (Abs IC50 - µM)

b

Cell line rank order 

A
bs

 IC
50

 - 
µ M

0.1

10.0

1.0

0 100 200

Highly sensitive
Intermediate sensitive
Resistant

Median:13.4 µM 

Median all tumour (sub)types Cut-off highly sensitive/
intermediate sensitive 

Cut-off intermediate sensitive/
resistant

Individual cell line
Median per tumour (sub)type

Fig. 1 The anti-tumour activity of MI-773 in the 274-CL panel in vitro. a The individual dose–response curves of all CLs to MI-773. Each line
corresponds to a fitted displacement curve for a CL. x-axis, MI-773 concentration in µM. Y-axis, drug effects on cell proliferation and survival
expressed as Test/Control × 100 (%) values. b Rank ordered Abs IC50 values obtained for each CL. The dashed red line depicts the median Abs
IC50 value. Dashed black lines are the cut-offs of 1 and 10 µM identifying highly sensitive (<1 µM), intermediate sensitive ([1, 10 [µM) and
resistant (≥10 µM) CLs. c Scatter plot of the drug potency expressed with Abs IC50 value per CL (x-axis). On the y-axis, the histological (sub)
types are sorted from top to bottom by increasing median Abs IC50 values. Between brackets the total number of CLs within a tumour (sub)
type. Abbreviations: CNS_GBM central nervous system: glioblastoma, CRC colorectal cancer, HNSC head &neck squamous cell, LE_ALL acute
lymphoblastic leukaemia, LE_AML acute myeloid leukaemia, LE_CLL chronic lymphocytic leukaemia, LE_CML chronic myelogenous leukaemia,
Liver_chol Liver_cholangioma, Liver_hep liver_hepatocellular, LY_Burkitt lymphoma_Burkitt, LY_DLBC lymphoma_Diffuse large B cells,
LY_Hodgkin lymphoma_Hodgkin, LY_MM lymphoma_multiple myeloma, LY_unclass lymphoma_unclassified, NSCL_ad non-small cell
lung_adenocarcinoma, NSCL_ep non-small cell lung_epidermoid, NSCL_large non-small cell lung_large cells, NSCL_unclass non-small cell
lung_unclassified, SA_Ewing Sarcoma Ewing, SA_osteo osteosarcoma, SA_soft t sarcoma soft tissue, SCLC small cell lung, uterus_endo
uterus_endometrium. d The percentage of highly sensitive (light blue), intermediate sensitive (grey-blue) and resistant CLs (dark blue) to MI-
773 across different tumour types.
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data) were correlated with the Abs IC50 values obtained from
181 standard anti-cancer agents with a known mechanism of
action from our proprietary drug sensitivity database for cytotoxic
potency and selectivity25,26. The agents most closely related to the
MI-773 inhibitory profile were three inhibitors of the p53–MDM2
interaction: Nutlin-3a (ϼ= 0.83), RG-7112 (ϼ= 0.64), and YH239-EE
(ϼ= 0.48) (Spearman correlation test, all p-values < 0.0005)
(Fig. 2a, Supplementary Table 3a). Nutlin-3a, as the reference
compound for MDM2 inhibition, was tested in 273 out of the 274-
CL panel used for MI-773. Its median Abs IC50 value was 30 µM,
[IQR: 12.8–33.1 µM], twice that of MI-773, and with a similar
pattern of tumour (sub)type response as that of MI-773
(Supplementary Fig. 1a).
For independent validation of our results, the MI-773 Abs IC50

values were tested in a second and third COMPARE analysis
against the GDSC1 and GDSC2 databases (443 drug sensitivity
datasets, 987 CLs) from the COSMIC cancer cell line database27.
Nutlin-3a showed also here the highest correlation with MI-773
(Spearman correlation test GDSC1, ϼ= 0.62, p= 1.1E−14; Spear-
man correlation test GDSC2, ϼ= 0.61, p < 2.2E−16), confirming MI-
773’s mechanism of action (Fig. 2b, c, Supplementary Table 3b, c).
Interestingly, the correlations with other inhibitors of the p53-
signalling pathway with other modalities of action were more

modest. The mutant p53-reactivating small molecules MIRA-1 and
PRIMA-1MET showed a correlation coefficient of 0.35 (p=
5.94E−05) and 0.23 (p= 7.66E−03), respectively; the correlation
coefficient of the inhibitor of MDM2–proteasome interaction JNJ-
26854165 (Serdemetan) was 0.12 (p= 1.62E−01) and that of the
MDMx inhibitor NSC-207895 was 0.09 (p= 3.04E−01).
The median Abs IC50 value of Nutlin-3a was lower in both

GDSC1 (46.9 µM, IQR: 13.1–96.9 µM) and GDSC2 databases
(125.96 µM, IQR: 35.02–296 µM) than in our in vitro test
(Supplementary Fig. 1b, c). The drug response pattern observed
across tumour types matched well with our MI-773 and Nutlin-3a
internal data: leukaemia, lymphoma, melanoma, neuroblastoma,
mesothelioma, and renal cancer were the most sensitive tumour
types to MDM2 inhibition.

Molecular features associated with the CL sensitivity to
MI-773
To analyse molecular determinants of CL sensitivity to MI-773,
whole-exome mutations, somatic copy number alterations (SCNA),
and gene expression profiles were available for 237/274 CLs. This
CL panel had similar characteristics as the 274-CL panel regarding
(sub)types and distribution into the three subsets of MI-773
sensitivity (Supplementary Table 4).

NSC-207895

Negative correlation (p<0.05)Positive correlation (p<0.05)

a b

c

Fig. 2 COMPARE analysis of MI-773 mechanism of action. Volcano plot showing the anti-cancer drugs correlated with MI-773 Abs IC50
(COMPARE analysis). x-axis: Rho values obtained (Spearman), y-axis: p-values. Blue: anti-cancer drugs with a positive correlation (p-values <
0.05), red: negative correlation (p-values < 0.05) (light brown: not significant). a 4HF Biotec database, b and c Sanger GDSC1 and GDSC2
databases. The size of the circles is proportional to the number of data points compared.
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First, we determined genomic alterations associated with CL
sensitivity and resistance to MI-773. Whole-exome sequencing
data unveiled 17,196 mutated genes present in at least two CLs
of our panel. Gene per gene testing revealed 535 mutated
genes significantly associated with MI-773 Abs IC50 levels (two-
sided Wilcoxon test, p-value < 0.05). TP53 mutations were by far
the major genetic determinants for resistance to MI-773 (two-
sided Wilcoxon test, p= 8.56E−15) (Fig. 3a, b). When the
p-values were adjusted using the Benjamini and Hochberg
correction, TP53 remained the only significant mutated gene
out of the 535 (adjusted p= 1.47E−10). TP53 mutations were
present in 69% (163/237) of the CLs in our panel (Fig. 3b,
Supplementary Table 5). The MI-773 median Abs IC50 value of
the group of TP53 mutated CLs was 11-fold higher (15.1 µM, IQR:
12.2–18.8 µM) than that of the wild type TP53 CL group (1.4 µM,
IQR: 0.6–12.3 µM) (Fig. 3b).
Figure 3c shows the landscape of the TP53-mutated CLs and the

corresponding MI-773 Abs IC50 values. It highlights that 91% of
CLs (149/163) with TP53 mutations were strongly resistant to MI-
773 (Abs IC50 ≥ 10 µM, Fisher´s exact test: p-value < 2.2E−16)
(Supplementary Table 5). In-depth analysis of TP53 mutation types
(Fig. 3d upper lollipop plot) confirmed the diversity of alterations
and localisations. TP53 mutations were mainly present in the p53
DNA-binding domain, and a part of them was found in two or
more CLs (Fig. 3d lower lollipop plot). In summary, the presence of
a TP53 mutation strongly indicated resistance to MI-773,
irrespective of the mutation type or its location.
However, sensitivity to MI-773 did not only depend on the

mutation status of TP53; 21 out of 74 CLs with wild type TP53
were resistant to the compound, whereas 14 out of 163 TP53-
mutated CLs were sensitive (Supplementary Table 5). We
verified whether genomic alterations in MDM2 contributed to
MI-773 resistance in wild type TP53 CLs. Only two out of the 21
wild types TP53 CLs resistant to MI-773 showed MDM2
mutations. High MDM2 SCNA (PICNIC value ≥8) was absent in
our 237-CL panel. In the overall CL panel, 135 CLs (57%) showed
a moderate SCNA at MDM2 loci (PICNIC value >2), which was,
however, not associated with higher expression levels of MDM2
and response to MI-773 (data not shown). Thus, resistance to
MI-773 in wild type TP53 CLs in our panel was not related to
MDM2 gene alterations. When we broadened the analysis to
whole-exome mutations and SCNA of other genes present in
these 21 wild type TP53 CLs, we did not find any genomic
alteration that could explain the resistance to MI-773.
Next, we screened the transcriptome of the 237-CL panel to

identify genes whose expression level was associated with the
sensitivity to MI-773 (see the “Methods” section). After removing
probe sets not showing consistent gene expression (probe sets
with values below five in all samples were excluded), a total of
31,751 probe sets were tested for an association between
transcript expression level and MI-773 Abs IC50 values. For a
robust and stringent result, the analysis was carried out by
applying three statistical tests (two-sided t-test, Limma (cut-off for
MI-773 Abs IC50 at the 30th percentile: 10.7 μM), and Spearman
correlation test). At the intersection of the three statistical tests,
we obtained a total of 552 probe sets significantly associated with
the MI-773 Abs IC50 (adjusted p-value < 0.05) (Fig. 4a). From these
probe sets, we retained 316 (each corresponding to a unique
gene) that had, according to the Jetset scoring method, the best
specificity, coverage, and degradation resistance28. The volcano
plot shown in Fig. 4b displays 113 out of 316 genes with high
expression associated with sensitivity to MI-773 and 124 with
higher expression in resistant CLs (genes with fold difference
amplitude > ±0.5). The most significant genes with high expres-
sion associated with MI-773 sensitivity include SPATA18, ZMAT3,
CDKN2A, BAX, and the target MDM2.
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) biological process (BP) enrichment analyses were

performed on the 113 genes with high expression in CLs sensitive
to MI-773. The outcome confirmed that the genes were
dominantly related to the compound’s mechanism of action with
11 genes associated with the p53-signalling pathway (Fig. 4d,
Supplementary Table 6a). Three genes (MDM2, MDM4, PPM1D)
have direct protein–protein interaction with TP53; others were
involved in the cell cycle (CDKN1A, ZMAT3, CCNG1, RRM2B),
apoptosis (BAX, BCL2), DNA repair (DDB2), and antioxidant defence
(SESN1)29 (Supplementary Table 6b). Remarkably, in the subset of
21 CLs wild type for TP53 and resistant to MI-773, we observed a
lower expression level of these TP53-related genes (MDM2, BCL2,
BAX, and TP53) compared with wild type TP53 CLs sensitive to MI-
773. The expression of these genes was similarly low in wild type
and mutated TP53 CLs resistant to MI-773, except for the TP53
level that was high in the mutated group (Supplementary Fig. 2).
Next, we investigated the feasibility to predict response to

MI-773 using molecular-based models. We tested whether
unsupervised hierarchical clustering could result in the mole-
cular classification of the 237 CLs into clusters with different
response rates toward MI-773. For this, we used 237 out of the
316 differentially expressed genes with a consistent fold
difference (>±0.5). The analysis showed three clusters of CLs
with significant differences in MI-773 response rate (proportion
test p= 2E−04) (Fig. 4c, Supplementary Table 7). Cluster 2 had
the highest response rate (52%, 17/33), followed by cluster 1
(31%, 40/129) and cluster 3 (13%, 10/75). The mean MI-773 Abs
IC50 of the sensitive CLs (<10 µM) in each of the three clusters is
similar (2–3 µM), and that of the resistant CLs is a factor 6–8
higher (Supplementary Table 7). However, we observed that the
clusters were largely driven by the histological origin of the CLs:
solid vs. haematological tumour types, exemplified by cluster 2
consisting of only leukaemia and lymphoma CLs (Fig. 4c). On
the other hand, the composition of cluster 1 is rather broad;
basically, with all tumour types present in the CL panel.
Interestingly, it also comprised all sensitive and resistant CLs
from CNS, melanoma, renal and prostate cancer, sarcoma, SCLC,
and mesothelioma. Cluster 3 contains the remainder of the CLs:
liver, gastric, head and neck cancer, NSCLC, ovary, breast,
uterus, oesophagus, and bladder cancer.
We, therefore, preferred to explore the feasibility of a compre-

hensive gene expression-based scoring system to predict response
to MDM2 inhibition. For that, we selected the 11 genes related to the
p53-signalling pathway that were the most significantly associated
with MI-773 sensitivity. For each of the 237 CLs, we calculated a
predictive score consisting of the average expression value of the 11
genes, and we set up a cut-off at 7.5 to predict sensitivity. We
showed first that the predictive score was strongly associated with
the TP53 mutation status of the CLs (Supplementary Table 8): 53 out
of 74 (72%) CLs with wild type TP53 had a high score (>7.5) and 115
out of 163 CLs (70%) with TP53 mutations had a low score (≤7.5)
(Fisher’s exact test, p-value < 1.38E−09). The regression analysis
showed that the predictive score was inversely correlated with the
MI-733 Abs IC50 values across the 237-CL panel (Spearman ϼ=−0.6,
p-value < 2.2E−16, upper plot of Fig. 4e). Notably, the predictive score
also correlated with the MI-773 Abs IC50 values in the wild type TP53
CL subset (Spearman ϼ=−0.7, p-value < 2.26E−12, lower plot of Fig.
4e). Overall, 128/136 CLs (94%) with a predictive score of ≤7.5 were
resistant, whereas 59/101 CLs (58%) with a predictive score of >7.5
were sensitive (Fisher’s exact test p-value < 2.2E−16, Supplementary
Table 9a). Several options and combinations were explored during
the classifier development, particularly reduction of the number of
genes, but the 11 genes together provided the most robust classifier.
Studying the performance of the predictive score in both wild

type and mutated TP53 CLs separately showed that the predictive
score was particularly useful in wild type TP53 CLs. Subdividing the
237 CLs into two groups, wild type TP53/high score and mutated
TP53/low score, respectively, increased the accuracy of the
prediction considerably for the wild type TP53/high score CLs
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from 58% to 91% and only slightly for the mutated TP53/low score
CLs from 94% to 97% (Supplementary Table 9b, c).
The assumption that a decisional tree consisting of the

combination of the TP53 mutation status, and the predictive
score would better predict sensitivity and resistance to MDM2

inhibition was tested with the MI-773 and Nutlin-3a sensitivity
datasets (GDSC1 dataset). With this approach, 53 CLs were
predicted sensitive to MI-773 (wild type TP53 and a predictive
score >7.5) and 184 CLs were predicted resistant (n= 163 with
TP53 mutated and 21 wild type TP53 with a predictive score ≤7.5)

TP53 signaling 
pathway

Transcriptional 
misregulation in cancer

Melanoma

Thyroid cancer

Glioma

BCL2

CDKN1A

ZMAT3

DDB2

MDM2

BAX RRM2B

SESN1

MDM4

PPM1D
CCNG1

MEF2C

BCL2A1

CAMK2D

TPR

T−test

LimmaSpearman 

3178 6
25

1

1 100

552

TP53

MUT

RR: 
14/163 (9%)

WT

RR: 
53/74 (72%)

High

RR: 
48/53 (91%)

Low

RR: 
5/21 (24%)

>7.5<7.5 Predictive 
Score

TP53

MUT

RR: 
43/307 (14%)

WT

RR: 
88/132 (67%)

High

RR: 
84/109 (77%)

Low

RR: 
4/23 (17%)

>7.5<7.5 Predictive 
Score

a b

c

e

f

MI-773 Nutlin-3a 
(GDSC1 Sanger)

A
dj

us
te

d 
p-

va
lu

e 
(L

im
m

a)

log2(fold difference)

1e+00

1e-03

1e-06

2 1 0 -1 -2 -3

SPATA18
MDM2

ZMAT3

CDKN1A BAX

DDB2
RPS27L

CYFIP2 RRM2B XPC
RPL22L1BCL2

ANKRD44
DCAF8

KIAA1522ZNF436
CDKN2APPL

LMAN2L
CST6

KIAA1671
KLK8

ULBP2

TACSTD2

Log2 fold difference < −0.5, significant p-value
Log2 fold difference > 0.5, significant p-value

log2 fold difference

−5 0 5

Highly sensitive to MI-773

Resistant to MI-773
Intermediate sensitive to MI-773

Haematologic cancer CLs
Solid cancer CLs

Cluster 1

Cluster 2
Cluster 3

d Pr
ed

ic
tiv

e 
Sc

or
e

WT TP53 CLs (n = 74)

All CLs (n = 237)

6

7

8

9

−2 0 2 4

6

7

8

9

Spearman’s rho: -0.7
P-value < 2.26E-12

Spearman’s rho: -0.6
P-value < 2.2E-16

log2 (Abs IC50 - µM)

Treatment

No treatment

V Vuaroqueaux et al.

6

npj Precision Oncology (2021)    96 Published in partnership with The Hormel Institute, University of Minnesota



(Fig. 4f, left). The sensitivity and specificity of the decisional tree
test were 91% and 76%, respectively. It showed overall a superior
positive predictive value (91%) to identify CLs sensitive to MI-773
than a negative one for the identification of resistant ones (76%)
(Supplementary Table 10).
Molecular and drug sensitivity data of Nutlin-3a were available

for 537 CLs from GDSC1. In this dataset, 98 CLs were also present
in our 274-CL panel tested for MI-773 and were, therefore, not
considered for the following validation study, leaving a final panel
of 439 CLs. Like for MI-773, the predictive score for these CLs was
strongly associated with TP53 mutation status (two-sided
Wilcoxon test p-value < 2.22E−16) (Supplementary Fig. 3a). We
also validated that the predictive score negatively correlated with
Nutlin-3a Abs IC50 in all CLs and in wild type TP53 CLs only
(Spearman ϼ=−0.5, p-value < 2.2E−16 and ϼ=−0.5, p-value=
4.5E−9, respectively (Supplementary Fig. 3b). Using the decisional
tree, 109 out of 439 (25%) CLs were predicted to be sensitive to
Nutlin-3a and 330/439 (75%) resistant (Fig. 4f, right). By taking a
cut-off at the 30th percentile, 84 out of the 109 CLs (77%) were
predicted sensitive to Nutlin-3a-Abs IC50 values ≤19.7 µM, whereas
283 out of 330 (86%) were predicted resistant with Nutlin-3a Abs
IC50 > 19.7 µM. The decisional tree’s sensitivity and specificity for
predicting Nutlin-3a sensitivity or resistance were 95% and 43%,
whereas the positive predictive value for sensitivity was 77% and
the negative one identifying resistance was 83% (Supplementary
Table 11).
We finally tested the association between (a) the TP53 mutation

status, (b) the predictive score or (c) the combination of both for
association with Abs IC50 for the other TP53 related small
molecules in the databases. As shown before, TP53 mutation
status was strongly associated with CL Abs IC50 of Nutlin-3a
(GDSC2) and RG-7112 (Wilcoxon test p-value < 2.2E−16), to a
lesser extent with YH239-EE, PRIMA-1MET, MIRA-1, JNJ-26854165
but not with NSC-207895 (Wilcoxon test p-value ≤ 0.05) (Supple-
mentary Table 12). A similar sequence of compounds was found
for the association between the predictive score and CL Abs IC50.
However, we also noticed that the classification with the
predictive score alone better predicts sensitivity to PRIMA-1MET,
MIRA-1 and NSC-207895 compounds than the TP53 mutation
status. The association was weaker for YH239-EE (Wilcoxon test p-
value= 0.02) and absent for JNJ-26854165. In wild type TP53 CLs
only, the association was well preserved for Nutlin-3a and RG-
7112, borderline significant for PRIMA-1MET, MIRA-1, NSC-207895
and not significant for YE239-EE and JNJ-26854165. Thus, the
decisional tree combining TP53 mutation status and the predictive
score showed a significant association with all compounds
(Wilcoxon test p < 0.05), which was much more pronounced for
compounds targeting the p53–MDM2 interaction than for the
others.

DISCUSSION
Various classes and generations of small-molecule MDM2
inhibitors have been developed over the last 20 years, of which
Nutlin-3a was the first potent inhibitor9,10. The current knowledge
of the anti-tumour activity spectrum of these compounds is not
exhaustive. Although tumours with gene amplification and
overexpressing MDM2 and MDM4, the negative regulators of
p5330,31, are obvious candidates for such therapy, other tumours
should be targetable with this type of compound.
Testing MI-773 in a wide range of CLs demonstrated that MI-773

has potential for a broad range of solid tumour types and
haematological malignancies. Melanoma, renal cancer, sarcoma,
gastric cancer, leukaemia, and lymphoma were the most sensitive
cancer types. In line with the previously reported mechanism of
actions32,33, our COMPARE correlation analyses, a large-scale
exercise using hundreds of drug sensitivity datasets annotated
for the mechanisms of action, showed that the anti-tumour profile
of MI-773 was similar to those of Nutlin-3a and RG-7112, other
antagonists targeting the p53–MDM2 interaction. In contrast, the
study showed that the MI-773 inhibitory profile was poorly
correlated with those of compounds targeting the p53 pathway
via another mechanism of action (MIRA-1, PRIMA-1MET, JNJ-
26854165 or NSC-207895). The comparison study also supported
that MI-773 had a superior potency over Nutlin-3a.
With an extended pharmacogenomic analysis, we validated that

TP53 mutations can be considered, irrespective of their type or
localisation, as a universal marker of resistance to inhibitors
targeting p53–MDM2 interactions. This was not the case for the
other p53-related compounds for which the TP53 mutation status
was only poorly predictive. Our study also demonstrated that the
sensitivity of wild type TP53 CLs to MI-773 varied considerably;
some CLs were strongly resistant. The recently reported results of
the inhibitor of p53–MDM2 DS-3032b are in line with our data.
TP53 mutations predicted overall resistance. Only a few TP53-
mutated CLs were sensitive to MDM2 inhibition, and just like our
results, a part of the wild type TP53 CLs was strongly resistant to
the compound34. These observations are in accordance with the
work of Donehower et al. 5, demonstrating that more than 90% of
TP53-mutant cancers exhibit second allele loss of expression,
either by mutation, chromosomal deletion, or copy-neutral loss of
heterozygosity, leading to alteration of the p53 protein level in
most cases. Thus, the type of TP53 mutation and the level of p53
determine the sensitivity of TP53-mutated CLs for p53–MDM2
inhibitors. In wild type TP53 CLs, the large variety in drug response
implies that additional factors determine the sensitivity to MDM2
inhibition.
The large size and the transcriptome annotation of our CL panel

allowed us to successfully run a differential gene expression
analysis to identify additional predictors of MI-773 sensitivity. To
this end, we did not select wild type TP53 CLs only since the
number (n= 74) was an explicit limitation to obtain significant

Fig. 4 Association of gene expression with sensitivity toward MI-773. a Venn diagram showing the number of Affymetrix Human Genome
U133 plus 2.0 probe sets significantly associated with MI-773 Abs IC50 according to the t-test, Limma and Spearman statistical tests (adjusted
p-value < 0.05). b Volcano plot showing levels of significance of individual genes for the association of their expression levels with MI-773 Abs
IC50 values. x-axis, log2 fold difference of gene expression level between MI-773 response groups; y-axis, Limma adjusted p-values on log10
scale. The red and blue dots show the genes having an expression significantly associated with the response to MI-773 (significant adjusted p-
value in Limma, t-test and Spearman) and a log2 fold difference >0.5 (red dots) or <−0.5 (blue dots) as calculated by Limma. The grey dots
depict the genes neither significantly associated with the response to MI-773 (adjusted p-value ≥ 0.05 in Limma, t-test and Spearman) nor
having fold difference below 0.5 of amplitude. c Heatmap with unsupervised hierarchical clustering of 237 differentially expressed genes (fold
difference > ±0.5). First upper bar shows response groups to MI-773, second upper bar shows the type of cancer cell lines (haematologic or
solid). d KEGG enrichment analysis of the 113 genes whose high expression was positively associated with MI-773 sensitivity. e Spearman
correlation analysis between MI-773 Abs IC50 values and the gene expression-based predictive score. Upper plot: all CLs, lower plot: wild type
TP53 CLs only. The solid line shows the correlation between the MI-773 Abs IC50 values and the gene expression-based predictive score. Dots
are coloured according to their response groups to MI-773. f Decisional tree performance for the CL classification into groups of sensitive and
resistant to MDM2 inhibition. RR: response rates. Left: MI-773, right: Nutlin-3a.
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results with adjusted p-values. By considering all CLs, we identified
hundreds of differentially expressed genes between groups of CLs
that were sensitive or resistant to MI-773. Our work supports that
unsupervised hierarchical clustering using these genes was not
satisfying to classify CLs since tumour type rather than p53–MDM2
functionality was the basis of the clustering. It had hardly
predictive value because each cluster comprised sensitive and
resistant CLs. The sensitive CLs were mainly wild type TP53, and
>80% of the resistant CLs had TP53 mutations.
Pathway analysis of differentially expressed genes highlighted

that the top predictors of MI-773 response were 11 upregulated
genes closely related to the p53 signalling pathway, including
MDM2 itself. Four genes (CDKN1A, DDB2, MDM2, CCNG1) were
retrieved in the 20 most significantly upregulated genes in wild
type TP53 tumours in the TCGA database5. Another four genes
(BAX, MDM2, ZMAT3, and CDKN1A) belonged to the 10 upregu-
lated genes in circulating wild type TP53 leukaemia cells of
patients treated with the MDM2-antagonist RG7112 and were
absent in mutated TP53 leukaemia cells35.
To predict MI-773 response, we decided to test a supervised

approach to develop a comprehensive gene expression-based
scoring system named “predictive score” based on these 11 genes.
The low number of genes and their positive association with the
sensitivity to the compound present advantages for better
applicability in the clinic. Combining the predictive score and
the TP53 status strengthened the identification of CLs sensitive for
MI-773 and other p53–MDM2 inhibitors Nutlin-3a and RG-7112.
Our results further suggest that the predictive score alone was
also applicable to mutant p53-reactivating small molecules (MIRA-
1 and PRIMA-1MET) and the MDMx inhibitor NSC-207895, but not
to MDM2–proteasome interaction inhibitor JNJ-26854165 (Serde-
metan). The predictive value of the score has now to be validated
in patient tumour samples and in a prospective study. Most
probably, some adjustments will be necessary for assessment in
tumours containing stroma. Similarly, Zhong et al. 36 developed a
4-gene mRNA MDM2-antagonist therapy predictive signature,
which is under investigation, and Ishizawa et al. 34 developed a
175-gene signature. The 175 genes represented the top 1% of
genes upregulated in MDM2-inhibitor sensitive CLs. The Spearman
correlation between in vitro sensitivity and the 175-gene signature
score obtained by Ishizawa et al. 34 was similar to ours (ϼ= 0.67).
An additional 1500-gene signature focusing on AML did not
improve the prediction, suggesting that more is not better and is
not feasible in a clinical setting. In general, biomarkers are not
always used in current clinical studies with MDM2 inhibitors, a part
used TP53 for patient selection9.
Apart from the results of our study, other findings should be

considered in the development of MI-773. Kim et al. 37 showed the
efficacy of MI-773 in glioblastoma. However, further experiments
with orthotopically implanted PDX models demonstrated that the
low penetration through the blood–brain barrier limited MI-773’s
efficacy. The compound is a substrate of P-glycoprotein limiting its
distribution to the brain by active efflux and the authors proposed
a combination therapy with efflux transporter inhibitors38. In
another aspect, it was observed thatw the treatment of
dedifferentiated liposarcoma patients with MI-773 can cause the
emergence of resistant TP53-mutated clones39. For long-term
control of the disease, combination therapies have been
proposed. The combination of MI-773 and pimasertib, an oral
MEK1/2 inhibitor, was promising in wild type TP53 preclinical
melanoma models in vivo21. The subsequent Phase I clinical study
showed that the safety profile of the combination was consistent
with the safety profiles of both drugs individually, and preliminary
anti-tumour activity was observed21. Other combinations of
MDM2 inhibitors with chemotherapeutic or targeted agents are
being explored in early clinical studies such as cytarabine, BCL-2
(venetoclax), BRAF (trametinib), MEK (dabrafenib), CDK4/6 (palbo-
ciclib) inhibitors, and immune checkpoint inhibitors23,40,41.

The pharmacogenomic work described here was performed in
the context of the development of our “Cancer Data Mining”
platform. Our study demonstrated that the drug and molecular
information available on our platform is relevant for validating the
mechanism of action of compounds and targets, discovering
candidate tumours for therapy, and early identification of
predictive biomarkers. The concept of our approach is based on
testing associations between the sensitivity of CLs for a drug and
the basal gene expression levels or genomic alteration profile of
the CLs, which recently was successful in revealing mechanisms of
action of drugs and protein targets42. This approach requires large
sets of molecularly annotated preclinical models. It is crucial to
first understand the mechanism behind the sensitivity and
resistance of new anti-cancer agents before testing the compound
in vivo in tumour models, e.g., PDX. Given the inter- and intra-
tumour heterogeneity, in vitro screening of compounds should
preferably be performed in hundreds of CLs, allowing statistical
analysis. The accuracy and reliability of OMICS data, usually
obtained from accredited laboratories, is also a prerequisite for the
success of such studies. The microenvironment of tumour models
in vivo will add another layer of complexity to understand the
effect of a drug on sensitivity and resistance.
In conclusion, the combination of in vitro preclinical investiga-

tions and pharmacogenomic studies extended the therapeutic
options of the p53–MDM2 inhibitor MI-773 to a broad range of
wild type TP53 haematological and solid tumour types. TP53 status
combined with the gene expression-based predictive score may
help to infer tumour response to this inhibitor. Additional studies
in vivo are needed to validate the anti-tumour effect and assess
MI-773 toxicity and other studies in independent cohorts to
validate the predictive score. Furthermore, combination studies
with p53–MDM2 inhibitors are inevitable and warrant further
investigation.

METHODS
Drugs
MI-773 (SAR405838, MI-77301) (Catalogue No. S7649) and Nutlin-3a
(Catalogue No. S8059) were purchased from Selleckchem (Munich,
Germany). The drugs were dissolved in DMSO to obtain a stock solution,
which was kept at 4 °C, and immediately before use further diluted with
culture medium to concentrations required for the in vitro experiments.

Human tumour CLs
Two hundred and seventy-four CLs from the Oncotest GmbH repository
(Freiburg Germany, since 2015 Charles River Discovery Research Services
(DRS) Germany GmbH) were used in the study (Supplementary Table 1).
Cells were grown at 37 °C in a humidified atmosphere with 5% CO2 in the
medium recommended by the provider (Supplementary Table 1). The
annotations of the CLs were performed via the Charles River DRS database
and the COSMIC cancer cell line database43. Tumour cell line authenticity
was confirmed by short tandem repeat analysis at DSMZ (Braunschweig,
Germany). The CLs were mycoplasma free.
The 274-CL panel consisted of 222 CLs derived from solid cancers

including 68 CLs (25%) from the digestive system (16 CRC, 16 stomach, 15
pancreases, 11 liver hepatomas, five liver cholangiocarcinomas, and five
oesophagi), 49 (18%) from the urogenital tract (14 kidneys, 11 ovaries,
eight bladders, five prostate, and 11 uteri), 43 (15%) from the respiratory
system (28 non-small cell lung (NSCLC), 10 small cell lung (SCLC) and five
mesotheliomas), 15 (5%) from breast cancer, 13 (5%) from sarcomas (one
Ewing, three osteosarcomas, nine soft tissue), 12 (4%) from head and neck
(HNSC), 12 (4%) from melanomas, and nine (3%) from the central nervous
system (CNS, glioblastomas) and one epidermoid carcinoma CL (A431)
classified as skin tumour (from vulva). The 52 haematological CLs included
27 leukaemia (10%) (11 AML, eight acute lymphocytic leukaemia (ALL),
seven chronic myeloid leukaemia (CML), one chronic lymphocytic
leukaemia (CLL)) and 25 lymphomas (9%) (11 multiple myelomas (MM),
four Burkitt, five diffuse large B-cell (DLBC), one Hodgkin and four
unclassified).
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Cell proliferation assay
A modified propidium iodide assay was used to screen the CLs, growing in
a 2D-monolayer culture, for sensitivity to MI-77344. Briefly, cells were
harvested from exponential phase cultures, counted, and seeded in 96-well
flat-bottom microtiter plates at a cell density of 4000–30,000 cells/well,
dependent on the growth rate of the CLs. Haematologic and CLs from
SCLC were grown in suspension cultures. After a 24-h recovery period to
allow the cells to resume exponential growth, 10 μl of culture medium (six
control wells/cell line/plate) or culture medium with MI-773 was added.
The compound was serially diluted and applied at ten concentrations in
half-log increments from 0.001 up to 30 µM in singlicate and treatment
continued for four days. Cells were then washed with 200 µl phosphate-
buffered saline to remove dead cells and debris. Next, 200 µl of a solution
containing 7 µg/ml propidium iodide and 0.1% (v/v) Triton X-100 was
added to the wells. After 1–2 h incubation at room temperature,
fluorescence was measured using an Enspire® multimode plate reader
(excitation λ= 530 nm, emission λ= 620 nm; Perkin Elmer, Rodgau,
Germany) to quantify the number of viable cells.
Drug effects on cell proliferation and survival were expressed as Test/

Control × 100 (%) values, using the mean fluorescence signal of treated
and control wells. IC50 values, absolute and relative, were calculated by a
four-parameter non-linear curve fit (Charles River Data Warehouse
Software).
The median of all individual IC50 values determined the overall potency

of MI-773. If an individual IC50 value could not be determined within the
examined dose range (because the compound was either too active or
lacked activity), the lowest or highest concentration studied was used for
the value calculation.

Molecular databases
Most of the CLs tested for MI-773 were characterised by 4HF Biotec GmbH
as described below. CLs were characterised by next-generation sequencing
for whole-exome mutations, single nucleotide polymorphism (SNP) array
(Affymetrix Genome-Wide Human SNP Array 6.0 (SNP6.0)) for SCNA and
gene expression array for transcriptomic profiles (Affymetrix Human
Genome U133 Plus 2.0 Array). Missing profiles and additional data used
for the biomarker validation were obtained from the Cancer Cell Line
Encyclopedia45 (downloaded 2017). In this case, processed whole-exome
mutation data were directly downloaded. CEL files of both SNP6.0 and
Human Genome U133 Plus 2.0 Array were processed together with the
internal CL profiles to limit batch effects.

DNA and RNA isolation and purification
DNA and RNA were extracted, according to the adapted protocols
previously described46. In brief, cells were placed on ice, washed three
times with cold phosphate-buffered saline to remove any traces of
medium. Adherent cells were removed from the cell culture dish using
sterile cell scrapers. Cell pellets were frozen in liquid nitrogen immediately
after the last washing step and stored at −80 °C until extraction. On the
day of DNA and RNA extraction, the frozen cell pellets were placed on ice,
and then the appropriate lysis buffer was added.
For DNA extraction, proteinase K buffer (Qiagen, Hilden, Germany) was

added to the lysed cell suspension, and the mixture was incubated
overnight at 55 °C. The lysates were digested with DNase-free RNase
(Qiagen, Hilden, Germany), the DNA was extracted with phenol/chloro-
form/isoamyl alcohol and precipitated with ethanol. The pellets were
washed and resuspended in TE buffer (Tris 10 mM pH8, EDTA 0.1 mM pH8).
The DNA integrity of each preparation was checked on a 1.3% agarose gel,
and the quantity and purity were analysed with a NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, RRID:SCR_008452).
RNA was extracted using the mirVana™ miRNA isolation kit (Ambion,

Carlsbad, CA, USA) according to the manufacturer’s instructions. The RNA
quality and purity were controlled with a NanoDrop 2000 spectrophot-
ometer (RRID:SCR_018042), and RNA integrity by a Bioanalyzer (Agilent
Technologies, RRID:SCR_018043).

Gene expression
Microarray gene expression profiles were generated by using the
Affymetrix Human Genome U133 Plus 2.0 GeneChip arrays according to
Affymetrix recommendations at the AROS laboratory (now Eurofins
Genomics Europe Genotyping A/S, Denmark). CEL files were subjected to
internal quality control measures using Affymetrix RLE/NUSE. Gene

expression signal values were extracted directly from the CEL files using
the GeneChip robust multi-array average (gcrma) expression algorithm.
This was achieved using the R package “gcrma” from the Bioconductor
project47. Signal values were log2 transformed.

Exome mutations
Whole-exome sequencing was performed at the GATC laboratory (now
Eurofins Genomics, Konstanz, Germany). The enriched exonic DNA was
sequenced on an Illumina Hiseq2000, 2500 or 4000 (paired-end reads,
RRID:SCR_016383, SCR_016386) with a minimum coverage of 100×.
Raw reads were subjected to FastQC (RRID:SCR_014583) to calculate

read quality metrics48. After the alignment to the human reference
genome (Burrows–Wheeler Aligner version 0.7.17)49, the quality of BAM
files was assessed by Qualimap 2.2.1 (RRID:SCR_001209) to obtain the
percentage of mapped reads and coverage of reads to the targeted exons
(as defined by Agilent)50. The mapped reads were recalibrated with GATK
(RRID:SCR_001876) BaseRecalibrator function after duplicates removal and
indel local realignment51. Reads mapped around indels were realigned
used the GATK’s IndelRealigner function before performing the variant
calling step. Variants were detected independently using three different
variant callers: the GATK UnifiedGenotyper, the combination of Samtools
(RRID:SCR_002105) mpileup and bcftools, and Freebayes (RRID:
SCR_010761)52–54. Only variants identified by all three tools, showing a
minimum number of variant-supporting reads of three and a minimum
variant frequency of 5%, were further analysed. Candidate mutations were
annotated with SnpEff (RRID:SCR_005191) by selecting only single-
nucleotide variants and insertions/deletions (Indels) with a high or
moderate protein impact from UCSC or Ensembl transcripts55, and by
filtering out known polymorphisms from annotation databases if a variant
(1) has at least three allele counts from Hapmap (RRID:SCR_002846) or CGI
69 genomes or EVS+ 1000 Genomes or (2) shows more than 5% of a
minor allele in at least one population from dbSNP (RRID:SCR_002338). The
quality control of variant detection analysis was evaluated with SnpEff by
computing and validating the transition/transversion ratio from SNP found
in exons.

Somatic copy number alterations
The detection of chromosomal alterations was performed with the
Affymetrix SNP6.0 array following the standard protocol recommended
by the manufacturer at the AROS laboratory (now Eurofins Genomics
Europe Genotyping A/S, Denmark). According to Affymetrix guidelines, CEL
files were subjected to internal quality control measures, including contrast
quality control and MAPD threshold using Genotyping Console Software
(Thermo Fisher Scientific, RRID:SCR_008452). SCNA values (0–14) were
determined from the CEL files using the PICNIC algorithm56.

Statistical analysis methods
Statistical analyses were carried out using The R Project for Statistical
Computing (R statistical environment version 3.4.4, RRID:SCR_001905) and
associated packages from Bioconductor in the Linux operating system
(Ubuntu, 16.04.4)57. p-values < 0.05 were considered statistically significant.
Data are represented as means ± standard deviation (SD), and median
(interquartile range (IQR)). For biomarker screening, drug response data
were treated either as continuous variables using absolute IC50 (Abs IC50)
or as categorical variables (with two groups of highly sensitive plus
intermediate sensitive versus resistant CLs, at the Abs IC50 30th percentile
(cut-off= 10.7 µM)). To identify whole-exome mutations and SCNA
associated with drug response, for each gene, samples with at least one
alteration (whole-exome mutation or SCNA ≥ 8 or SCNA= 0) were given
the value 1 and no alteration was given 0, resulting in matrices of binary
representation. Next, binary matrices of genomic alterations (exome
mutations, copy number variations) were used for a gene per gene
statistical analysis for association with drug sensitivity (Abs IC50 and drug
sensitivity groups). Wilcoxon rank-sum test was performed between
continuous variables (Abs IC50) and binary categorical variables (mutated
versus not mutated or high SCNA versus no SCNA). Fisher’s exact test was
used for independence between two categorical variables. For any test
between two continuous variables, statistical dependence between the
rankings of the two variables was evaluated by Spearman’s rank
correlation test.
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Differential gene expression analysis
The association between gene expression and drug Abs IC50 or sensitivity
groups was tested using Limma (package version 3.34.9)58,59, t-test and
Spearman tests. A cut-off was set at 10.7 µM to dichotomise sensitive CLs
to MI-773 from resistant ones (which corresponds to 30% of the 237-CL
panel). The gene expression profiles were curated by removing probe sets
with lack of expression (probe sets < 5 were excluded), resulting in 31,751
probe sets with consistent expression. They were tested for an association
between their expression levels and MI-773 Abs IC50 values. Probe sets
significantly associated with sensitivity to MI-773 in all three statistical tests
(adjusted p < 0.05) were then filtered by Jetset curation52 to retain unique
gene transcripts. Those with a pronounced differential expression between
CLs sensitive and resistant to MI773 (log2 fold difference > ±0.5) were used
to perform unsupervised hierarchical clustering using the function
clustering from the EMA library (version 1.4.4). The ComplexHeatmap
package (version 2.4.3) was used to create and visualise the clusters and
heatmaps.
For each statistical test with multiple testing hypotheses, p-values were

adjusted with Benjamini and Hochberg correction as a conservative
method for probability thresholding to control the occurrence of false
positives60. Lollipop mutation diagrams were generated using the lollipops
software61. To gain insight into the nature of the gene subset that were
positively associated with MI-773 sensitivity, Kyoto Encyclopedia of Genes
and Genomes (KEGG) and the GO BP-enrichment pathway analysis was
carried out with enrichKEGG and enrichGO (ont= “BP”), respectively in
clusterProfiler (RRID:SCR_016884, version 3.6.0)62.

Cancer data miner platform
Anti-tumour activity and genomic data were unified in an in silico platform
called “4HF Cancer Data Miner”, dedicated to accelerate R&D efforts in
drug discovery and development, optimise target evaluation, identify
promising clinical therapeutic areas, and discover putative predictive
biomarkers.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
For the biomarker analysis of MI-773: Affymetrix Human Genome U133 Plus 2.0
transcriptomic data have been deposited in Gene Expression Omnibus (GEO) under
the accession code GSE152529. The Affymetrix SNP6.0 data used have been
deposited in GEO under the accession code GSE178763 or were obtained from CCLE
(https://depmap.org/portal/ccle). The whole exome sequencing data been deposited
are accessible under BioProject accession PRJNA750602 or were obtained from CCLE
(https://depmap.org/portal/ccle). For the validation of the scoring system using
Nutlin-3a compound, all molecular data were obtained from CCLE (https://depmap.
org/portal/ccle).

CODE AVAILABILITY
The code used to analyse the genomic alterations is available upon request from the
corresponding author.
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