Tumor model: JA-2019 Subcutaneous – syngeneic – proprietary

Mouse-derived isograft tumor models (MDI)

Today, cancer research tends to focus on development of novel cancer immunotherapies. While classical syngeneic mouse models are based on the implantation of cultured cell lines, Reaction Biology's mouse-derived isograft (MDI) tumor models make use of tumor tissue that has been propagated in mice with a very low number of passages. Hence, the major advantage of these novel and unique spontaneous-derived or carcinogen-induced MDI tumor models is the preservation of primary tumor phenotype and intratumoral immune cell populations.

Tumor tissue JA-2019

Origin: sarcoma / murine

Description: 3-Methylcholanthren induced Reaction Biology GmbH Source:

Study example

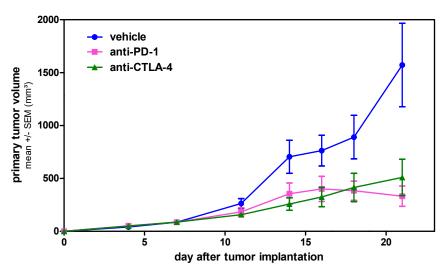
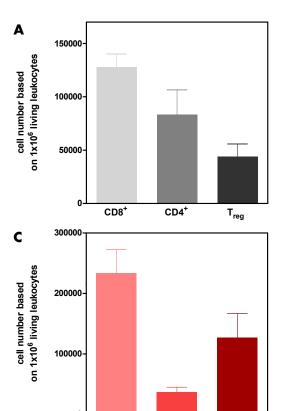


Figure 1: JA-2019 tumor growth when treated with anti-PD-1 and anti-CTLA-4 antibodies monitored by calipering

Reference compounds tested

Anti-PD-1: strong antitumoral response (positive control) Anti-CTLA-4: strong antitumoral response (positive control)


please turn over <</p>

N VIVO TESTING SERVICES

Flow cytometry

Flow cytometry enables the characterization of immune cell populations. Hence, changes in these populations by immune-modulating therapies give insight in their mode of action. Established standard staining panels for T lymphocytes, macrophages and myeloid-derived suppressor cells are offered. In addition, custom-tailored staining panels are established upon requested. The unaffected phenotype of immune cell populations of the described model is depicted.

Macrophages

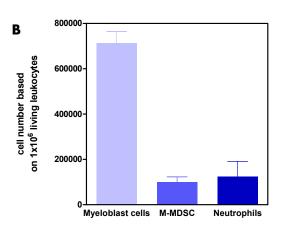


Figure 2: Profile of immune cell populations (T cells (A), Myeloid derived suppressor cells (B), Macrophages (C)) at study end in JA-2019 tumors analyzed by flow cytometry

Quality assurance

Routine health monitoring of sentinel animals (according to FELASA guide lines)

M1 Type

Adherence to the 5R rules (reduce, refine, replace, responsible, remember)

M2 Type

Note: Graphs depicted are derived from study examples. Each study is a biological system of its own and subject to intrinsic variation.