

Introduction

Checkpoint inhibitor treatment has already become a common therapy of various cancer types. However, there is still a growing need for well-characterized preclinical mouse models, as clinical data indicate that patients only partially respond to this regiment. Currently, cell lines cultured from the 1970s are used frequently to evaluate novel therapies.

To this end, new mouse-derived isografts (MDI) were established from spontaneously occurring (JA-0009) or carcinogen-induced tumors (JA-2011 and JA-2042). These MDI tumors are transplanted as tissue pieces in a PDX-like manner from animal to animal and are tested for their solid growth. Furthermore, the efficacy of immune checkpoint inhibitor treatment is evaluated and the presence of different immune cell populations in the tumor is characterized by flow cytometry analysis. In addition, RNA-seq data complete the first characterization of these models and will give insights into the expression level and genetic modification of genes in these models.

VALUE OF NEW SPONTANEOUS AND CARCINOGEN-INDUCED MOUSE-DERIVED ISOGRAFT (MDI) **TUMOR MODELS FOR DRUG DEVELOPMENT OF NOVEL IMMUNE THERAPEUTIC APPROACHES**

Janette Beshay, Peter Jantscheff, Cynthia Obodozie, Christoph Schächtele, Holger Weber

Reaction Biology GmbH, Freiburg, Germany

	Gene expression (FPKM values)					
	JA-0009		JA-2011		JA-2042	
	sample 1	sample 2	sample 1	sample 2	sample 1	sample 2
ma	42.246	39.482	19.460	20.503	62.764	49.006
6	1.257	0.773	1.433	0.318	9.097	6.613
	0.793	0.873	0.447	0.267	3.658	3.015
	1.575	0.898	0.597	0.706	4.033	2.505
	6.752	4.789	3.783	3.901	12.127	11.312
ing	4.636	5.536	4.918	3.987	7.021	7.502
	0.161	0.136	0.659	0.513	14.236	12.366
ptor	37.323	30.111	16.357	15.704	30.151	28.046
	4.238	2.831	1.393	0.923	45.016	24.324
	41.223	36.996	7.127	7.141	79.711	65.278
	7.640	7.409	2.421	1.104	21.513	20.296
	24.492	15.757	1.510	1.445	2.996	3.072
	10.770	6.110	0.600	0.709	2.331	2.125
	63.335	62.056	15.800	17.280	30.596	28.809
	0.818	0.675	1.223	0.438	7.494	6.838
	0.940	0.437	0.290	0.000	0.587	1.035
	0.039	0.099	0.112	0.000	1.273	0.848
	26.809	12.568	0.783	0.792	1.399	0.905
	1.520	1.512	0.676	0.380	6.870	5.895
	2.433	2.073	1.518	0.929	3.694	3.940
	26.792	6.986	0.176	0.566	2.667	0.784
	78.838	79.382	8.332	6.334	19.421	10.466
	0.771	1.136	0.128	0.000	0.033	0.000
	3.108	2.039	2.392	1.374	8.097	6.592
	44.663	38.088	11.567	10.864	31.248	24.513
	14.251	11.497	0.686	0.563	2.390	0.793
	0.067	0.042	0.072	0.026	1.628	1.269
	0.218	0.092	0.052	0.056	0.119	0.000
	53.329	49.470	66.608	44.893	108.433	98.369
	0.344	0.327	0.118	0.177	1.057	0.906
	0.491	0.209	0.161	0.103	0.879	0.632
	6 746	4.050	2 004	4.000	4 (00)	2 002

Summary

- Summary
- Development of new syngeneic models with robust growth
- Syngeneic models respond different to immune checkpoint inhibitors
- Preservation of tumor phenotype via propagation from animal to animal
- Correlation of RNAseq with flow cytometry data (e.g. high T cell proportion in JA-2042 tumor)
- Higher expression of genes of the IFN- γ signature correlates with checkpoint inhibitor efficacy

Outlook

- Further carcinogen-induced models are offered: JA-2019 and JA-2041
- More spontaneous arosen tumors are under development: JA-0017, JA-0023 and JA-0032

Please follow

https://www.reactionbiology.com/productsservices-vivo-testing-services/immuno-<u>oncology-platform-proprietary-models</u>

Fig. 3: Cells isolated from solid tumors of the vehicle group were stained for MDSC, T cell and macrophage markers and analyzed by flow cytometry. The graphs depict the number of cells per 1 million leukocytes in the indicated tumors (see legend). For the comparison of the results, the data for the cell line-derived tumors are shown.