Introduction

::REACTION

BIOLOGY

Protein kinases are central to cellular signal transduction and regulation of cellular processes, and are one of the most attractive target classes in modern drug discovery. Multiple kinase inhibitors have already been approved for treatment of various diseases including such severe conditions as cancer.

The first and up to today largest group of drugs that effectively inhibited their respective kinase targets belong to the class of ATPcompetitive compounds. They bind into or near the ATP binding site of the enzymes and inhibit kinase activity by blocking access of ATP to the active site. Although there are numerous examples of highly specific ATP-competitive compounds this mode of action is limited by several factors: The ATP binding pocket structures of kinases show a high degree of similarity, which makes finding highly selective compounds challenging. Furthermore, competing with ATP for binding to the same target site, compounds have to be of very high affinity due to the high intracellular ATP concentrations.

Therefore, the interest to develop non-ATP-competitive inhibitors has risen considerably over the last years. Such inhibitors bind to kinases at sites apart from the ATP binding site, inhibiting their activity e.g. by stabilizing an inactive conformation (like DFG-out state binders), displacing essential cofactors (like cyclins for CDKs) or by blocking activating modifications (like phosphorylation by upstream kinases). The IC₅₀ values of ATP-competitive inhibitors apparently increase if the ATP concentration in the assay is increased. For a purely ATPcompetitive inhibitor this change in the IC₅₀ value may be calculated by the formula suggested by Cheng and Prusoff¹:

$$IC_{50} = K_i \left(1 + \frac{[ATP]}{K_{M[ATP]}} \right)$$

By determining IC_{50} values for an inhibitor of a specific kinase at ATP concentrations ranging from $0.1 \times K_{M[ATP]}$ to $10 \times K_{M[ATP]}$ we examined whether the IC₅₀ value changed according to the Cheng-Prusoff equation >10fold, indicating an ATP-competitive mode of action, or if the IC_{50} values remain unchanged or change only slightly in presence of elevated ATP indicating a non-ATP competitive or mixed type mode of action respectively.

By comparing the results for the non-ATP-competitive inhibitor selumetinib², the type-2 inhibitor sorafenib³ and staurosporine^{4,5} using different kinases, we could verify that our assay setup is well suited to discriminate kinase inhibitors with regard to their ATP competition characteristics.

The assay is based on radiolabelled ³³P-g-ATP. Kinase and substrate are incubated in presence of ATP containing ³³Pg-ATP as tracer in 96 well plates. After stopping the kinase reaction, the reaction cocktail is transferred into 96 well filter plates and passed through the filter membrane by aspiration. Proteins are binding to the filter membrane and bound radioactivity is quantified by scintillation counting.

Assay Protocol:

- 10 μ l substrate
- 10 *µ*l kinase
- 5 μ l compound
- Start reaction by addition of 5 μ l ATP/³³P-g-ATP mixture
- Incubate 20 min at 30°C
- Stop reaction by addition of 20 μ l H₃PO₄ - transfer reaction to 96 well filterplate
- aspirate reaction
- wash 3x with 200 μ l 150 mM H₃PO₄ - add 50 μ l scintillation cocktail
- determine cpm

- Final assay conditions: 70 mM HEPES pH 7.5 3 mM MgCl_2 3 mM MnCl_2 $3 \mu M$ Na-orthovanadate 1.2 mM DTT
- 1 % DMSO

A biochemical approach to discriminate between ATP-competitive and non-ATPcompetitive protein kinase inhibitors

Reaction Biology GmbH, Freiburg, Germany

- in a 96 well polypropylene plate mix per well:
- 20 μ l reaction buffer

ATP*, substrate and kinase at variable concentration

*: [ATP]: 0.1 to 10x apparent K_{M} [ATP] of the respective kinase

IC₅₀ inhibition curves of HIPK4 for Sorafenib and Staurosporine. Example for primary data and resulting dose-response curves. HIPK4 K_M[ATP] apparent: 0.2 μ M each inhibitor concentration was determined

	MEK1				VEGF-R2				НІРК4			
	Selumetinib		Staurosporine		Sorafenib		Staurosporine		Sorafenib		Staurosporine	
x ΑΤΡ-Κ _Μ (μΜ)	IC ₅₀ (M)	Hill Slope										
0.1	1.50E-07	-0.81	1.40E-07	-1.40	4.30E-09	-1.70	5.60E-09	-0.94	1.90E-08	-1.40	1.60E-07	-0.88
0.3	9.40E-08	-1.10	2.40E-07	-1.90	4.30E-09	-1.40	8.20E-09	-1.10	1.70E-08	-1.40	2.20E-07	-1.00
1	5.90E-08	-2.00	3.20E-07	-1.70	4.30E-09	-1.10	1.30E-08	-1.20	2.00E-08	-1.20	3.30E-07	-0.74
3	5.80E-08	-1.00	6.20E-07	-1.90	9.40E-09	-1.60	1.60E-08	-0.86	2.80E-08	-1.10	1.10E-06	-0.79
10	9.30E-08	-1.40	1.70E-06	-2.70	9.70E-09	-1.10	2.90E-08	-0.56	4.60E-08	0.86	3.80E-06	-0.70
IC ₅₀ @10хАТР-К _М / IC ₅₀ @0.1хАТР-К _М	0.6		12.1		2.3		5.2		2.4		23.8	
Indicative for inhibition mode	non-ATP-competitive		ATP-competitive		mixed		mixed		mixed		ATP-competitive	

Numerical results of the experiments, including IC_{50} values and Hill-slopes for all tested kinases and inhibitors. Ratios of the IC₅₀ values at 10xATP-K_M and 0.1xATP-K_M are calculated. Based on the Cheng-Prusoff equation a prototypical ATP-competitive inhibitor is expected to exhibit a ratio of 10. Therefore the inhibition modes were classified as non-ATP competitive for a ratio of <2, as mixed for ratios of >2 and <10 and as ATP-competitive for ratios of >10.

Daniel Müller, Frank Totzke, Thomas Weber, Carolin Heidemann-Dinger, Constance Ketterer, Diane Krämer, Marcel Pathe, and Michael H.G. Kubbutat

Inhibition curves of three kinases and two inhibitors at ATP concentrations ranging from 0.1x K_M-ATP to 10x K_M-ATP.

Dose response curves for all tested ATP concentrations for the respeictive kinases and inhibitors were plotted into one graph to visualize the influence of increasing ATP concentration on the IC_{50} .

Summary

- Non-ATP-competitive kinase inhibitors can be discriminated from ATP-competitive inhibitors by determining IC50 values in presence of increasing amounts of ATP
- The ATP-competitive or non-ATP-competitive characteristic of the same inhibitor (Staurosporine) may vary in a kinase dependent manner
- A type-2 inhibitor (Sorafenib) exhibited a mixed characteristic between ATP-competitive and non-ATPcompetitive compounds

References

- Cheng & Prusoff. (1973) Biochem. Pharmacol. 22(23): 3099-3108.
- 2. Yeh et. al. (2007) Clin Cancer Res. 13(5): 1576-1583.
- 3. Holderfield et. al. (2014) Br J Cancer. 111(4): 640-645.
- 4. Yanagihara et. al. (1991) J Neurochem. 56(1): 294-298.
- 5. Omura et. al. (1995) J Antibiot (Tokyo). 48(7): 535-548.

Contact Information

Daniel Müller

- Reaction Biology Europe GmbH Engesserstr. 4 Freiburg, Germany
- ✓ d.mueller@reactionbiology.de
- www.reactionbiology.com