

In Vivo Pharmacology

In Vivo Hollow Fiber Model	. 3
Subcutaneous and SubQperior TM Mouse Tumor Models	. 4
Orthotopic Mouse Tumor Models	. 6
Metastasis Mouse Tumor Models	. 7
Immuno-Oncology Platform	. 8
Mouse-derived Isograft Tumor Models (MDI)	. 9

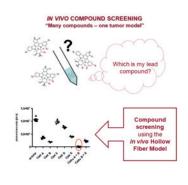
Reaction Biology has established a large panel of subcutaneous, subQperiorTM, orthotopic and metastasis tumor models (including bioluminescence readout) for testing the efficacy of novel therapeutic agents on primary tumors and metastases in animals. Moreover, standard and proprietary syngeneic tumor models are available, which enables efficacy testing of test compounds in immune competent animals and the investigation of the immune-modulatory effect (e.g. by flow cytometry). Tumor angiogenesis can be investigated in In vivo Angiogenesis Models. Reaction Biology's In Vivo Hollow Fiber Model allows to screen the most suitable cell line or the most promising antitumoral effective lead test compound in a cost and time reduced manner in mice. The service portfolio is supplemented by other study types (e.g. tolerability, PK, PD). In addition, new models can be established upon request.

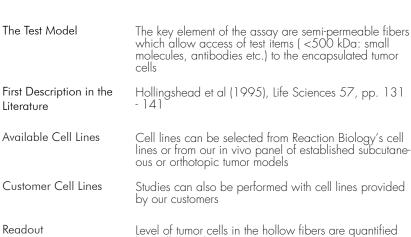
Let's discover together.

In Vivo Hollow Fiber Model

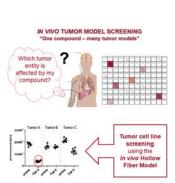
Field of Application

The In Vivo Hollow Fiber Model is a fast and economical in vivo screening approach which can be used for two different purposes:


- Selection of a compound with the best in vivo activity against a tumor cell line of interest ("compound screening")
- Identification of the most suitable cell line for an in vivo efficacy study with a selected test compound ("tumor model screening")


The method allows simultaneous evaluation of test items against up to three different tumor cell lines in two different compartments (s.c. & i.p. implantation) within the same mouse. Due to the low variability of the assay, studies can be performed with three mice per group. These characteristics predestine the Hollow Fiber Model for drug or tumor model screening in vivo.

Our Service


Typical Examples of Custom-Tailored Projects:

Objective	Short Description of a Standard Study		
In vivo compound screening	Testing of up to 14 compounds in one study. Cell culturing; encapsulation of tumor cell line of interest in hollow fibers; subcutaneous & intraperitoneal implantation of hollow fibers; in vivo study with treatment (study duration of 14 days); hollow fiber harvesting; measurement of tumor cell viability by CellTiter-Glo; protocol & report		
In vivo tumor model screening	Testing of up to 12 tumor cell lines in one study. Cell culturing; encapsulation of three different cell types in hollow fibers; subcutaneous & intraperitoneal implantation of hollow fibers; in vivo study with treatment (study duration of 14 days); hollow fiber harvesting; measurement of tumor cell viability by CellTiter-Glo; protocol & report		

by CellTiter-Glo

Subcutaneous and SubQperiorTM Mouse Tumor Models

Field of Application

Subcutaneous mouse tumor models are widely used in preclinical drug development for measurement of antitumoral efficacy in a standardized and cost-effective manner.

SubQperior IM tumor models are an innovative alternative overcoming many of the drawbacks of tumor models based on subcutaneous tumor cell implantation. Standard implantation via subcutaneous injection causes frequent ulceration resulting in early abrogation of studies, leaving researchers with too short treatment windows and high heterogenicity with poor statistical value of study results. SubQperior 1M tumor models are based on tumor cell implantation into the mammary fat pad.

Advantages of SubQperiorTM tumor models:

- Implantation results in larger tumors and longer treatment windows
- Homogeneous and reliable growth yields study outcomes with outstanding statistical value
- Tumors are measured via caliper, making the handling as easy and inexpensive as for subcutaneous models

Our Service

Established Xenograft models (human cells); syngeneic models

Cell Lines (murine cells)

Customer Studies can be performed with cell lines provided by

Cell Lines our customers

Reference Cpd Available for most established cell lines

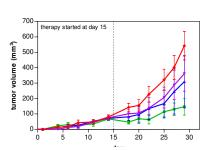
Standard Study Comprises among other things: (i) cell culturing & cell implantation;

(ii) measurement of animal weight (up to 3x/week);

(iii) determination of tumor size (2x/week);

(iv) treatment (1x/day; 5x/week); treatment period

depending on model; (v) protocol & report


Optional (i) blood sampling;

Services (ii) paraffin embedding of tumor tissue or organs;

(iii) histology & pathology;

(iv) MRT;

(v) Flow cytometry

Our Service

Human

Tumor Cell Line	Tissue Origin	Route of Application		
Ramos	Ascites	metastasis (i.v.)		
UM-UC-3	Bladder	orthotopic		
HG-3		subcutaneous		
HL-60		subcutaneous		
KARPAS 299		subcutaneous		
LP-1		orthotopic		
MOLM-13	Blood	subcutaneous; metastasis (i.v.)		
MOLT-4	Blood	subcutaneous		
MV4-11		subcutaneous; metastasis (i.v.)		
RPMI-8226		orthotopic		
SU-DHL-6		subcutaneous		
THP-1		subcutaneous		
SJSA-1	Bone	subcutaneous		
NCI-H929	Bone	subcutaneous; orthotopic		
Raji	Marrow	subcutaneous; metastasis (i.v.)		
A172		orthotopic		
LN-229		subcutaneous; orthotopic		
U-118 MG	Brain	subcutaneous		
U-87 MG		subcutaneous; orthotopic		
BT-474		subcutaneous; orthotopic		
HCC1187		subcutaneous		
HCC1569		orthotopic		
JIMT1	Breast	orthotopic; metastasis (i.c.)		
MCF7	biedsi	subcutaneous; orthotopic		
MDA-MB-231		subcutaneous; orthotopic; metastasis (i.c.); metastasis (i.v.)		
MDA-MB-468		orthotopic		
COLO 201		subcutaneous		
COLO 205		subcutaneous		
COLO 320DM		subcutaneous		
DLD-1		subcutaneous		
GP2d		subcutaneous		
HCT 116		subcutaneous; orthotopic; metastasis		
HT29	Colon	subcutaneous		
LoVo		metastasis		
LS 174T		subcutaneous		
RKO		subcutaneous		
SW480		subcutaneous		
SW620		subcutaneous/subQperior; orthotopic		
WiDr		subcutaneous		
HT1080	Connective Tissue	subQperior		
HuTu80	Duodenum	subcutaneous		
786-O		subcutaneous; orthotopic		
	Video	subcutaneous		
ACHN	Kidney	subcutaneous		
ACHN Hep3B2.1-7	Kidney	subcutaneous subcutaneous; orthotopic		
	Kidney			
Hep3B2.1-7	Kidney	subcutaneous; orthotopic		
Hep3B2.1-7 HepG2	<u> </u>	subcutaneous; orthotopic orthotopic subcutaneous; metastasis (i.v.);		

Tumor Cell Line	Tissue Origin	Route of Application		
A549		subcutaneous; metastasis (i.v.)		
Calu-3		subcutaneous		
Calu-6		subcutaneous		
EBC1		subcutaneous		
LK-2		subcutaneous		
NCI-H1373		subcutaneous		
NCI-H1437	Lung	subcutaneous		
NCI-H226		subcutaneous		
NCI-H292		subcutaneous		
NCI-H441		subcutaneous/subQperior		
NCI-H460		subcutaneous; metastasis (i.c.)		
PC-9		subcutaneous		
CAL-27	Oral	subcutaneous		
A2780		subcutaneous; orthotopic		
Hey		subcutaneous		
OVCAR-3	Ovary	subcutaneous; orthotopic		
SKOV-3		subcutaneous; orthotopic; orthotopic ascites		
AsPC1		subcutaneous; subcutaneous/ subQperior; orthotopic		
BxPC-3		subcutaneous; orthotopic		
HuP-T4		subcutaneous		
L3.6pL	Pancreas	orthotopic		
MiAPaCa2		subcutaneous; orthotopic		
PANC-1		subcutaneous; orthotopic		
Stew		subcutaneous		
Detroit 562	Pharynx	subcutaneous		
PC-3	Prostate	subcutaneous; orthotopic		
PC3-M	Trosidie	subcutaneous		
A2058		subcutaneous		
A375		subcutaneous		
A431		subcutaneous; subcutaneous/ subQperior		
C32		subcutaneous		
C8161	Skin	subcutaneous; orthotopic		
C8161.9		orthotopic		
G361		orthotopic		
HT144		subcutaneous		
UACC-257		subcutaneous		
Hs746T		subcutaneous		
MKN-1	Stomach	subcutaneous		
MKN-45		subcutaneous		
Hela	Uterus, Cervix	subcutaneous		
SK-LMS-1	Vulva	subcutaneous		

Mouse

Tumor Cell Line	Tissue Origin	Route of Application		
MB-49	Bladder	subcutaneous; orthotopic; metastasis (i.c.); metastasis (i.v.)		
MBT-2		subcutaneous		
A20		subcutaneous; subQperior		
C1498	DI I	subcutaneous; metastasis (i.v.)		
E.G7-OVA	Blood	subcutaneous		
EL4		subcutaneous		
GL261	Brain	orthotopic; subQperior		
4T1		subcutaneous; orthotopic; subQperior_orthotopic; metastasis (orthotopic); metastasis (i.v.)		
EMT6	Breast	subcutaneous; orthotopic; subQperior_orthotopic; metastasis		
EO771		orthotopic		
HC11-NeuT		orthotopic		
C26		subcutaneous		
CT26wt	Colon	subcutaneous; subQperior; orthotopic		
MC38		subcutaneous		
MC38-CEA#		subcutaneous; subQperior; orthotopic		
RENCA	Kidney	subcutaneous; subQperior; orthotopic		
Нера 1-6	Liver	subcutaneous; subQperior; orthotopic		
3LL		subcutaneous		
AB12		subcutaneous; subQperior		
LL/2 (LLC1)	Lung	subcutaneous, subQperior; orthotopic; metastasis		
M109		subcutaneous		
TC-1		subcutaneous		
KPC-2838		subcutaneous		
KPC-6419	Pancreas	subcutaneous		
PanO2		subcutaneous, subQperior; orthotopic		
B16-F0		subcutaneous; subQperior; orthotopic		
B16-F10	Skin	subcutaneous; subQperior; orthotopic; metastasis (i.c.); metastasis (i.v.)		
Clone M3/Cloudman S91		subcutaneous, subQperior		

Orthotopic Mouse Tumor Models

Field of Application

In orthotopic tumor models, tumor cells are inoculated into the organ of their origin. This implantation site allows organo-typical interaction between tumor cells and surrounding stroma affecting growth, differentiation, and drug sensitivity of tumor cells. For human tumor cell lines immune-compromised mice are used with the advantage to study classical antitumoral test compounds. In contrast, murine tumor cell lines can be grown in immune-competent mice (syngeneic). These tumor models combine the advantage of tumor stroma interaction with a functional developed immune system to assess novel immunotherapeutic approaches.

Our Service

#	Tumor Cell Line	Tissue Origin	Species
1	MB-49	Bladder	Mouse
2	A172		Human
3	GL261	Brain	Mouse
4	LN-229	Brain	Human
5	U-87 MG		Human
6	4T1		Mouse
7	BT-474		Human
8	EMT6		Mouse
9	EO771		Mouse
10	HCC-1569	Breast	Human
11	JIMT-1		Human
12	MCF7		Human
13	MDA-MB-231 (Z1)*		Human
14	MDA-MB-468		Human
15	CT26 wt		Mouse
16	MC38-CEA		Mouse
17	HCT-116	Colon	Human
18	SW620		Human
19	RENCA	I/o I	Mouse
20	786-0	Kidney	Human

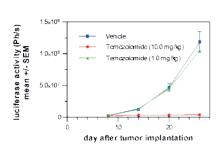
#	Tumor Cell Line	Tissue Origin	Species
21	Hep 3B2.1-7		Human
22	HepG2	Liver	Human
23	Hepa 1-6	Liver	Mouse
24	PLC/PRF/5		Human
25	LL/2	Lung	Mouse
26	A2780		Human
27	OVCAR-3	Ovary	Human
28	SKOV-3		Human
29	AsPC 1		Human
30	BxPC-3		Human
31	L3.6pL	Pancreas	Human
32	MiA-PaCa2	rancreas	Human
33	PanO2		Mouse
34	PANC-1		Human
35	PC-3	Prostate	Human
36	B16-F10		Mouse
37	C8161	Skin	Human
38	C8161.9		Human

^{*} in vivo selected subpopulation of the corresponding parental cell line

Customer Cell Lines Orthotopic tumor models can be established with cell lines provided by our customers

Analysis of Tumor Size

Via bioluminescence imaging (BLI) using luciferase-transduced cell lines or calipering of skin and breast tumors


Reference Cpd

Available for most established cell lines

Standard Study

Comprises among other things: (i) cell culturing & cell implantation; (ii) measurement of animal weight (up to 3x/week); (iii) determination of tumor size via BLI (1x/week) / calipering (2x/week); (v) treatment (1x/day; 5x/week); (vi) treatment period depending on model (vi) protocol & report

Optional Services (i) Blood sampling; (ii) paraffin embedding of tumor tissue or organs; (iii) histology & pathology (iv) MRT (v) flow cytometry

Study Example

Effect of Temozolomide (high dose = red, low dose = green) on orthotopic tumor growth of U-87 MG cells (vehicle control = blue) determined by in vivo bioluminescence imaging

Metastasis Mouse Tumor Models

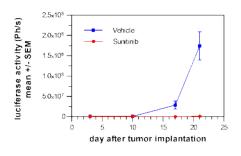
Field of Application

In metastatic tumor models, tumor spreading originates either from a primary tumor or is artificially induced by intravenous or intracardial tumor cell injection. The metastatic pattern is dependent on the tumor cell line with a preference for lung metastasis in the case of intravenous injection. For human tumor cell lines immunecompromised mice are used with the advantage to study classical antitumoral test compounds. In contrast, murine tumor cell lines can be grown in immune-competent mice (syngeneic), providing a functional immune system to assess novel immunotherapeutic approaches.

Our Service

#	Tumor Cell Line	Tissue Origin	Route of application	Species
1	Ramos	Ascites	i.v.	Human
2	MB-49	Bladder	i.c., i.v.	Mouse
3	C1498		i.v.	Mouse
4	MOLM-13	Blood / Leukemia	i.v.	Human
5	MV4-11		i.v.	Human
6	Raji	Bone Marrow	i.v.	Human
7	4T1 (M3)*		orthotopic	Mouse
8	4T1		i.v.	Mouse
9	EMT6	Breast	i.v.	Mouse
10	JIMT-1		i.c.	Human
11	MDA-MB-231 (Z1)*		i.c., i.v.	Human
12	HCT 116	Colon	orthotopic	Human
13	LoVo	Colon	orthotopic	Human
14	Huh-7	Liver	i.c., i.v.	Human
15	A549		i.v.	Human
16	LL/2	Lung	intra-splenic	Mouse
17	NCIH460		i.c.	Human
18	B16-F10	Skin	i.c., i.v.	Mouse

 $^{^{\}star}$ in vivo selected subpopulation of the corresponding parental cell line


Metastatic tumor models can be established with cell lines provided by our customers Customer Cell Lines

Via bioluminescence imaging (BLI) using luciferase-transduced cell lines Analysis of Metastasis

Reference Cpd Available for most established cell lines

Comprises among other things: (i) cell culturing & cell implantation; (ii) measurement of animal weight (up to 3x/week); (iii) determination of tumor burden via BLI (1x/week); (v) treatment (1x/day; 5x/week); treatment period depending on model; (vi) protocol & report Standard Study

(i) Blood sampling; (ii) paraffin embedding of organs; (iii) histology & pathology (iv) MRT (v) flow cytometry (vi) ex vivo analysis of organs Optional Services

Immuno-Oncology Platform

Field of Application

Our immuno-oncology platform supports the discovery of immune modulatory drugs as well as for the investigation of additional effects of conventional drugs on the immune system.

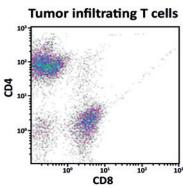
SubQperiorTM

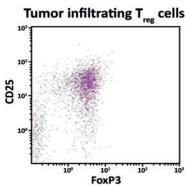
Tumor cell implantation into the mammary fat pad of mice results in superior tumor model performance over subcutaneous implantation.

SubQperiorTM tumor models substitute almost all of our conventional syngeneic subcutaneous tumor models eliminating ulceration issues that resulted in short treatment windows and small tumor sizes in the past.

SubQperiorTM tumor models allow reproducible and reliable testing of immune-modulating drugs.

Immunophenotyping


- 1. Flow cytometry is a perfect method to investigate the frequency of immune cells in tumor tissue and evaluate the immune-modulating effects of drugs. Our scientists can multiplex up to 20 markers for both, cell analysis and cell sorting. Off-the-shelf flow panels include the NK/T Cell Panel, T Cell Activation Marker Panel, DC Panel, and the All-in-One Flow Panel covering T cells, NK cells, B cells, MDSCs, DCs, macrophages, and neutrophils.
- 2. Multiplexing immune markers including cytokines and chemokines can be performed by the highly sensitive mesoscale discovery (MSD) platform.
- 3. Tissue cores of tumors of all our syngeneic tumor models are available in a tumor tissue microarray (TMA). This enables thorough up-front analysis of the presence of target immune cells in the tumors.
- Tumor tissue can be isolated and snapfrozen or embedded for histology or immunohistochemical investigation with a large variety of antibodies.



Anti-mPD-L1, anti-mPD-1 and anti-mCTLA4 antibodies were evaluated in all subcutaneous, subOperior and some orthotopic models

Panel Screening

On a regular basis, Reaction Biology performs testing on a panel of 6 SubOperior tumor models. Customers can choose from a selection of 8 tumor models. They pay for their treatment arms and receive data of vehicle control as well as anti-mPD1 antibody control in addition.

Mouse-derived Isograft Tumor Models (MDI)

Field of Application

Today, cancer research tends to focus on the development of novel cancer immunotherapies using syngeneic mouse models for the development of such compounds. While classical syngeneic mouse models are based on the implantation of cultured tumor cell lines, for Reaction Biology's mouse-derived isograft (MDI) tumor models are propagated subcutaneously in mice only. Implanted tumor pieces of low in vivo passage are originally derived from spontaneous- or carcinogen-induced mouse tumors. Hence, the major advantage of these novel and unique MDI tumor models is the preservation of primary tumor phenotype and intratumoral immune cell populations.

Our Service

MDI tumor models:

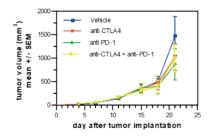
#	Model	Origin	Creation	RNAseq	anti-PD1	anti-CTLA-4	Combination	Therapeutic window	Relevant immune cells
1	JA-0009		spontaneous	yes	low	low	low	2 weeks	M2 macrophages
2	JA-001 <i>7</i>	adeno-carcinoma	spontaneous	ongoing	nd	nd	nd	>6 weeks	nd
3	JA-0032		spontaneous	ongoing	nd	nd	nd	4 weeks	nd
4	JA-2011		carcinogen	yes	low	low	nd	2 weeks	neutrophils
5	JA-2019	sarcoma	carcinogen	ongoing	high	high	nd	2 weeks	MDSCs/Tcells
6	JA-2041		carcinogen	ongoing	moderate	moderate	nd	3 weeks	MDSCs/Tcells
7	JA-2042		carcinogen	yes	moderate	moderate	high	2 weeks	Treg cells

nd = not determined

Characterization

- All models were histologically characterized
- Growth curves were established for all models
- · All models were tested with reference compounds
- RNA' sequence data available for selected

Flow Cytometric Analysis


- Analysis of tumor infiltrating leukocytes and cells isolated from spleen and/or lymph nodes
- Multicolor 17 marker panel: T cells, MDSCs, Macrophages, NK cells, B cells, DCs
 Customized staining procedures are possible

Standard Study

Comprises among other things: (i) Subcutaneous implantation of tumor pieces (ii) Measurement of animal weight (3x/week) (iii) Determination of tumor size

Optional Services

(i) Blood sampling (ii) Characterization of abundance and relative distribution of different immune cell subsets in the tumor and lymphatic tissues by flow cytometry (iii) Paraffin embedding of tumor tissue (iv) Histological & pathological analysis (v) Cytokine determination (vi) Provision of tumor tissue for target validation (xii) MRT

Notes

Notes

LET'S DISCOVER TOGETHER.

Recombinant **Proteins**

- Kinase proteins
- Epigenetic proteins
- Substrates
- Custom-tailored protein production

Target-Specific Assays

- Biochemical and cellbased assays
- Enzymatic activity testing
- Protein: Protein Interaction assays
- Receptor Biology

Cellular Oncology

- 2D and 3D proliferation assays
- Drug combination screening
- Invasion and migration assays
- Angiogenesis assay

Biophysical Assays

- Surface Plasmon Resonance
- Thermal Shift Assay
- Isothermal Titration Calorimetry
- Microscale Thermophoresis

In Vivo Pharmacology

- In Vivo Hollow Fiber Model
- Xenograft models
- Orthotopic models
- Metastasis models

- Cardiac Safety Panel
- CYP inhibition
- PK/PD studies
- In Vitro Safety Panel

Integrated **Drug Discovery**

- Target research
- Hit identification
- Hit-to-Lead
- Lead optimization

- Genomic biomarkers
- Protein biomarkers
- Immunophenotyping

Immuno-Oncology

- In Vitro Killing Assays
- Syngeneic Mouse Models
- Propriatary Tumor Models
- Immunophenotyping

www.reactionbiology.com | requests@reactionbiology.com